
DESIGN PATTERNS

COURSE 10

CONTENT

J2EE Design Patterns

APPLICATION

SERVERS

 In the 90’s, systems should be client-server

 Today, enterprise applications use the multi-tier model

J2EE
 Main Components

 JavaServer Pages (JSP)

 Used for web pages with dynamic content

 Processes HTTP requests (non-blocking call-and-return)

 Accepts HTML tags, special JSP tags, and scriptlets of Java code

 Separates static content from presentation logic

 Can be created by web designer using HTML tools

 Servlet

 Used for web pages with dynamic content

 Processes HTTP requests (non-blocking call-and-return)

 Written in Java; uses print statements to render HTML

 Loaded into memory once and then called many times

 Provides APIs for session management

 Enterprise JavaBeans (EJB)

 EJBs are distributed components used to implement business logic (no UI)

 Developer concentrates on business logic

 Availability, scalability, security, interoperability and integrability handled by the J2EE

server

 Client of EJBs can be JSPs, servlets, other EJBs and external aplications

 Clients see interfaces

J2EE

APPLICATIONS SPLIT

ON LEVELS

PATTERNS

CLASSIFICATION

 Patterns applicable on presentation level

 Patterns applicable on business level

 Patterns applicable on integration level

BUSINESS PATTERNS
 Business Delegate

 Service Locator

 Session Facade

 Application Service

 Business Object

 Composite Entity

 Transfer Object

 Transfer Object

Assembler

 Value List Handler

BUSINESS DELEGATE

 Problem

 You want to hide clients from the complexity of remote communication

with business service components.

 Forces

 You want to access the business-tier components from your presentation-

tier components and clients, such as devices, web services, and rich

clients.

 You want to minimize coupling between clients and the business services,

thus hiding the underlying implementation details of the service, such as

lookup and access.

 You want to avoid unnecessary invocation of remote services.

 You want to translate network exceptions into application or user

exceptions.

 You want to hide the details of service creation, reconfiguration, and

invocation retries from the clients

BUSINESS DELEGATE

 Solution

 Use a Business Delegate to encapsulate access to a

business service.

 The Business Delegate hides the implementation details of

the business service, such as lookup and access

mechanisms.

BUSINESS DELEGATE
WITHOUT APPLAING

THE PATTERN

AFTER BUSINESS DELEGATE

PATTERN IS APPLIED

BUSINESS DELEGATE.

STRUCTURE

 Client

 Presentation tier code may be JSP, servlet or UI java code.

 Business Delegate

 A single entry point class for client entities to provide access to Business Service methods.

 LookUp Service

 Lookup service object is responsible to get relative business implementation and provide business object

access to business delegate object.

 Business Service

 Business Service interface. Concrete classes implement this business service to provide actual business

implementation logic.

BUSINESS DELEGATE

BUSINESS DELEGATE

 Implementation strategies

 Delegate Adapter

 The Business Delegate proves to be a nice fit in a B2B

environment when communicating with Java 2 Platform,

Enterprise Edition (J2EE) based services.

 Disparate systems may use an XML as the integration

language.

 Integrating one system to another typically requires an

Adapter to meld the two disparate system

 Delegate Proxy

BUSINESS DELEGATE.

DELEGATE ADAPTER

BUSINESS DELEGATE

 Implementation strategies

 Delegate Adapter

 Delegate Proxy

 The Business Delegate exposes an interface that provides

clients access to the underlying methods of the business

service API.

 In this strategy, a Business Delegate provides proxy function

to pass the client methods to the session bean it is

encapsulating.

 The Business Delegate may additionally cache any

necessary data, including the remote references to the

session bean's home or remote objects to improve

performance by reducing the number of lookups.

 The Business Delegate may also convert such references to

String versions (IDs) and vice versa, using the services of a

Service Locator.

BUSINESS DELEGATE
 Implementation

strategies

 Delegate

Proxy

 Business

Delegate

public class LibraryDelegate {

 private BookDaoBase library;

 public LibraryDelegate()

 throws ApplicationException {

 init();

 }

 public void init() throws ApplicationException {

 // Look up and obtain our session bean

 try {

 library = (BookDaoBase) ServiceLocator.getInstance().

 getInterface("BookDao/remote");

 } catch (ServiceLocatorException e) {

 throw new ApplicationException(e);

 }

 }

...

BUSINESS DELEGATE
 Implementation

strategies

 Delegate

Proxy

 Concrete

service

....

 public List<Book> getBooks()

 throws ApplicationException {

 return library.queryAll();

 }

 public Book getBook(String isbn)

 throws ApplicationException {

 try {

 return library.getBook(isbn);

 } catch (NoSuchBookException e) {

 new ApplicationException(e);

 }

 }

...

BUSINESS DELEGATE

 Consequences

 Reduces coupling, improves maintainability

 Translates business service exceptions

 Improves availability

 Exposes a simpler, uniform interface to the business tier

 Improves performance

 Introduces an additional layer

 Hides remoteness

BUSINESS DELEGATE

 Related patterns

 Service Locator

 Session Facade

 Proxy

 Adapter

 Broker

BUSINESS PATTERNS
 Business Delegate

 Service Locator

 Session Facade

 Application Service

 Business Object

 Composite Entity

 Transfer Object

 Transfer Object

Assembler

 Value List Handler

SERVICE LOCATOR

Problem

You want to transparently locate business components and services in a

uniform manner.

Forces

You want to use the JNDI API to look up and use business components,

such as enterprise beans and JMS components, and services such as data

sources.

You want to centralize and reuse the implementation of lookup mechanisms

for J2EE application clients.

You want to encapsulate vendor dependencies for registry

implementations, and hide the dependency and complexity from the clients.

You want to avoid performance overhead related to initial context creation

and service lookups.

You want to reestablish a connection to a previously accessed enterprise

bean instance, using its Handle object.

SERVICE LOCATOR

 Solution

 Use a Service Locator to implement and encapsulate

service and component lookup. A Service Locator hides

the implementation details of the lookup mechanism and

encapsulates related dependencies.

 Used with

 Business Delegate

 Session Facade

 Transfer Object Assembler

 Data Access Object

SERVICE LOCATOR.

STRUCTURE

 Service

 Actual Service which will

process the request. Reference

of such service is to be looked

upon in JNDI server.

 Context / Initial Context

 JNDI Context carries the

reference to service used for

lookup purpose.

 Service Locator

 Service Locator is a single point

of contact to get services by

JNDI lookup caching the

services.

 Cache

 Cache to store references of

services to reuse them

 Client

 Client is the object that invokes

the services via ServiceLocator.

SERVICE LOCATOR

SERVICE LOCATOR

 Strategies

 EJB Service Locator

 JMS Queue Service Locator

 JMS Topic Service Locator

 EJB şi JMS Service Locator

SERVICE LOCATOR.

EXAMPLE

public class EntityManagerServiceLocator {

 private InitialContext initialContext;

 private Map<String, EntityManager> cache;

 private static EntityManagerServiceLocator _instance;

 static {

 try {

 _instance = new EntityManagerServiceLocator();

 } catch (ServiceLocatorException se) { }

 }

 private EntityManagerServiceLocator() throws ServiceLocatorException {

 try {

 initialContext = new InitialContext();

 cache = Collections.synchronizedMap(new HashMap<String, EntityManager>());

 } catch (NamingException ne) { throw new ServiceLocatorException(ne.getMessage(), ne);

 } catch (Exception e) { trow new ServiceLocatorException(e.getMessage(), e); }

 }

 static public EntityManagerServiceLocator getInstance() { return _instance; }

SERVICE LOCATOR

 Consequences

 Abstracts complexity

 Provides uniform service access to clients

 Facilitates adding EJB business components

 Improves network performance

 Improves client performance by caching

SERVICE LOCATOR

 EJB 3.0 Depency Injection

 @Resource

 @Ejb

 It does not replace the JNDI mechanism, it just replace the
way in witch a reference is obtain to JNDI

 Example
public class BookDao implements BookDaoRemote {

 @PersistenceContext(unitName = "libraryDS")

 private EntityManager em;

 public void delete(int id) {

 Book b = em.find(Book.class, new Long(id));

 em.remove(b);

 }

....

BUSINESS PATTERNS
 Business Delegate

 Service Locator

 Session Facade

 Application Service

 Business Object

 Composite Entity

 Transfer Object

 Transfer Object

Assembler

 Value List Handler

SESSION FACADE

 Problem

 You want to expose business components and services to remote clients.

 Forces

 You want to avoid giving clients direct access to business-tier

components, to prevent tight coupling with the clients.

 You want to provide a remote access layer to your Business Objects and

other business-tier components.

 You want to aggregate and expose your Application Services and other

services to remote clients.

 You want to centralize and aggregate all business logic that needs to be

exposed to remote clients.

 You want to hide the complex interactions and interdependencies between

business components and services to improve manageability, centralize

logic, increase flexibility, and improve ability to cope with changes.

SESSION FACADE

 Solution

 Use a Session Façade to encapsulate business-tier components
and expose a coarsegrained service to remote clients. Clients
access a Session Façade instead of accessing business
components directly.

 Used with

 Business delegate

 Business Object

 Application Service

 Data Acces Object

 Service Locator

 Broker

 Facade

SESSION FACADE.

STRUCTURE

SESSION FACADE

SESSION FACADE

 Stategies

 Stateless session beans

 A process that needs a single call to a business component

 Stateful session beans

 A business process that needs to maintain a conversation

with multiple business components

SESSION FACADE
public class LibraryFacadeBean implements LibraryFacade {

 @EJB(beanName = "BookDao")

 private BookDaoRemote bookEntity;

 @EJB(beanName = "BookClientDao")

 private BookClientDaoRemote bookClientEntity;

 public boolean takeBook(final String isbn,

 final int clientId) throws Exception {

 boolean status = true;

 Book book = bookEntity.getBook(isbn);

 if (book != null && !book.isStatus()) {

 status = false;

 throw new Exception("The book is not available!");

 }

 if (bookClientEntity.numberOfBorrowedBooks(clientId) >

 Constants.MAX_NUMBER_OF_BOOKS_TO_BE_BORROWED) {

 status = false;

 throw new Exception ("The client has borrowed “ +

 “already the maximum amount of books"

 + Constants.MAX_NR_OF_BOOKS_TO_BE_BORROWED

 + "!");

 }

 book.setStatus(false);

 BookClientTO bc = new BookClientTO();

 bc.setBookId(book.getId());

 bc.setClientId(clientId);

 bc.setBorrowDate(new Date());

 bookClientEntity.insert(bc.translateToBookClient());

 return status;

 }

SESSION FACADE

 Consequences

 Introduces a layer that provides services to remote clients

 Exposes a uniform coarse-grained interface

 Reduces coupling between the tiers

 Promotes layering, increases flexibility and maintainability

 Reduces complexity

 Improves performance, reduces fine-grained remote

methods

 Centralizes security management

 Centralizes transaction control

 Exposes fewer remote interfaces to clients

NEXT COURSES

 Refactoring

 Anti-patterns

