
DESIGN PATTERNS

COURSE 10

CONTENT

J2EE Design Patterns

APPLICATION

SERVERS

 In the 90’s, systems should be client-server

 Today, enterprise applications use the multi-tier model

J2EE
 Main Components

 JavaServer Pages (JSP)

 Used for web pages with dynamic content

 Processes HTTP requests (non-blocking call-and-return)

 Accepts HTML tags, special JSP tags, and scriptlets of Java code

 Separates static content from presentation logic

 Can be created by web designer using HTML tools

 Servlet

 Used for web pages with dynamic content

 Processes HTTP requests (non-blocking call-and-return)

 Written in Java; uses print statements to render HTML

 Loaded into memory once and then called many times

 Provides APIs for session management

 Enterprise JavaBeans (EJB)

 EJBs are distributed components used to implement business logic (no UI)

 Developer concentrates on business logic

 Availability, scalability, security, interoperability and integrability handled by the J2EE

server

 Client of EJBs can be JSPs, servlets, other EJBs and external aplications

 Clients see interfaces

J2EE

APPLICATIONS SPLIT

ON LEVELS

PATTERNS

CLASSIFICATION

 Patterns applicable on presentation level

 Patterns applicable on business level

 Patterns applicable on integration level

BUSINESS PATTERNS
 Business Delegate

 Service Locator

 Session Facade

 Application Service

 Business Object

 Composite Entity

 Transfer Object

 Transfer Object

Assembler

 Value List Handler

BUSINESS DELEGATE

 Problem

 You want to hide clients from the complexity of remote communication

with business service components.

 Forces

 You want to access the business-tier components from your presentation-

tier components and clients, such as devices, web services, and rich

clients.

 You want to minimize coupling between clients and the business services,

thus hiding the underlying implementation details of the service, such as

lookup and access.

 You want to avoid unnecessary invocation of remote services.

 You want to translate network exceptions into application or user

exceptions.

 You want to hide the details of service creation, reconfiguration, and

invocation retries from the clients

BUSINESS DELEGATE

 Solution

 Use a Business Delegate to encapsulate access to a

business service.

 The Business Delegate hides the implementation details of

the business service, such as lookup and access

mechanisms.

BUSINESS DELEGATE
WITHOUT APPLAING

THE PATTERN

AFTER BUSINESS DELEGATE

PATTERN IS APPLIED

BUSINESS DELEGATE.

STRUCTURE

 Client

 Presentation tier code may be JSP, servlet or UI java code.

 Business Delegate

 A single entry point class for client entities to provide access to Business Service methods.

 LookUp Service

 Lookup service object is responsible to get relative business implementation and provide business object

access to business delegate object.

 Business Service

 Business Service interface. Concrete classes implement this business service to provide actual business

implementation logic.

BUSINESS DELEGATE

BUSINESS DELEGATE

 Implementation strategies

 Delegate Adapter

 The Business Delegate proves to be a nice fit in a B2B

environment when communicating with Java 2 Platform,

Enterprise Edition (J2EE) based services.

 Disparate systems may use an XML as the integration

language.

 Integrating one system to another typically requires an

Adapter to meld the two disparate system

 Delegate Proxy

BUSINESS DELEGATE.

DELEGATE ADAPTER

BUSINESS DELEGATE

 Implementation strategies

 Delegate Adapter

 Delegate Proxy

 The Business Delegate exposes an interface that provides

clients access to the underlying methods of the business

service API.

 In this strategy, a Business Delegate provides proxy function

to pass the client methods to the session bean it is

encapsulating.

 The Business Delegate may additionally cache any

necessary data, including the remote references to the

session bean's home or remote objects to improve

performance by reducing the number of lookups.

 The Business Delegate may also convert such references to

String versions (IDs) and vice versa, using the services of a

Service Locator.

BUSINESS DELEGATE
 Implementation

strategies

 Delegate

Proxy

 Business

Delegate

public class LibraryDelegate {

 private BookDaoBase library;

 public LibraryDelegate()

 throws ApplicationException {

 init();

 }

 public void init() throws ApplicationException {

 // Look up and obtain our session bean

 try {

 library = (BookDaoBase) ServiceLocator.getInstance().

 getInterface("BookDao/remote");

 } catch (ServiceLocatorException e) {

 throw new ApplicationException(e);

 }

 }

...

BUSINESS DELEGATE
 Implementation

strategies

 Delegate

Proxy

 Concrete

service

....

 public List<Book> getBooks()

 throws ApplicationException {

 return library.queryAll();

 }

 public Book getBook(String isbn)

 throws ApplicationException {

 try {

 return library.getBook(isbn);

 } catch (NoSuchBookException e) {

 new ApplicationException(e);

 }

 }

...

BUSINESS DELEGATE

 Consequences

 Reduces coupling, improves maintainability

 Translates business service exceptions

 Improves availability

 Exposes a simpler, uniform interface to the business tier

 Improves performance

 Introduces an additional layer

 Hides remoteness

BUSINESS DELEGATE

 Related patterns

 Service Locator

 Session Facade

 Proxy

 Adapter

 Broker

BUSINESS PATTERNS
 Business Delegate

 Service Locator

 Session Facade

 Application Service

 Business Object

 Composite Entity

 Transfer Object

 Transfer Object

Assembler

 Value List Handler

SERVICE LOCATOR

Problem

You want to transparently locate business components and services in a

uniform manner.

Forces

You want to use the JNDI API to look up and use business components,

such as enterprise beans and JMS components, and services such as data

sources.

You want to centralize and reuse the implementation of lookup mechanisms

for J2EE application clients.

You want to encapsulate vendor dependencies for registry

implementations, and hide the dependency and complexity from the clients.

You want to avoid performance overhead related to initial context creation

and service lookups.

You want to reestablish a connection to a previously accessed enterprise

bean instance, using its Handle object.

SERVICE LOCATOR

 Solution

 Use a Service Locator to implement and encapsulate

service and component lookup. A Service Locator hides

the implementation details of the lookup mechanism and

encapsulates related dependencies.

 Used with

 Business Delegate

 Session Facade

 Transfer Object Assembler

 Data Access Object

SERVICE LOCATOR.

STRUCTURE

 Service

 Actual Service which will

process the request. Reference

of such service is to be looked

upon in JNDI server.

 Context / Initial Context

 JNDI Context carries the

reference to service used for

lookup purpose.

 Service Locator

 Service Locator is a single point

of contact to get services by

JNDI lookup caching the

services.

 Cache

 Cache to store references of

services to reuse them

 Client

 Client is the object that invokes

the services via ServiceLocator.

SERVICE LOCATOR

SERVICE LOCATOR

 Strategies

 EJB Service Locator

 JMS Queue Service Locator

 JMS Topic Service Locator

 EJB şi JMS Service Locator

SERVICE LOCATOR.

EXAMPLE

public class EntityManagerServiceLocator {

 private InitialContext initialContext;

 private Map<String, EntityManager> cache;

 private static EntityManagerServiceLocator _instance;

 static {

 try {

 _instance = new EntityManagerServiceLocator();

 } catch (ServiceLocatorException se) { }

 }

 private EntityManagerServiceLocator() throws ServiceLocatorException {

 try {

 initialContext = new InitialContext();

 cache = Collections.synchronizedMap(new HashMap<String, EntityManager>());

 } catch (NamingException ne) { throw new ServiceLocatorException(ne.getMessage(), ne);

 } catch (Exception e) { trow new ServiceLocatorException(e.getMessage(), e); }

 }

 static public EntityManagerServiceLocator getInstance() { return _instance; }

SERVICE LOCATOR

 Consequences

 Abstracts complexity

 Provides uniform service access to clients

 Facilitates adding EJB business components

 Improves network performance

 Improves client performance by caching

SERVICE LOCATOR

 EJB 3.0 Depency Injection

 @Resource

 @Ejb

 It does not replace the JNDI mechanism, it just replace the
way in witch a reference is obtain to JNDI

 Example
public class BookDao implements BookDaoRemote {

 @PersistenceContext(unitName = "libraryDS")

 private EntityManager em;

 public void delete(int id) {

 Book b = em.find(Book.class, new Long(id));

 em.remove(b);

 }

....

BUSINESS PATTERNS
 Business Delegate

 Service Locator

 Session Facade

 Application Service

 Business Object

 Composite Entity

 Transfer Object

 Transfer Object

Assembler

 Value List Handler

SESSION FACADE

 Problem

 You want to expose business components and services to remote clients.

 Forces

 You want to avoid giving clients direct access to business-tier

components, to prevent tight coupling with the clients.

 You want to provide a remote access layer to your Business Objects and

other business-tier components.

 You want to aggregate and expose your Application Services and other

services to remote clients.

 You want to centralize and aggregate all business logic that needs to be

exposed to remote clients.

 You want to hide the complex interactions and interdependencies between

business components and services to improve manageability, centralize

logic, increase flexibility, and improve ability to cope with changes.

SESSION FACADE

 Solution

 Use a Session Façade to encapsulate business-tier components
and expose a coarsegrained service to remote clients. Clients
access a Session Façade instead of accessing business
components directly.

 Used with

 Business delegate

 Business Object

 Application Service

 Data Acces Object

 Service Locator

 Broker

 Facade

SESSION FACADE.

STRUCTURE

SESSION FACADE

SESSION FACADE

 Stategies

 Stateless session beans

 A process that needs a single call to a business component

 Stateful session beans

 A business process that needs to maintain a conversation

with multiple business components

SESSION FACADE
public class LibraryFacadeBean implements LibraryFacade {

 @EJB(beanName = "BookDao")

 private BookDaoRemote bookEntity;

 @EJB(beanName = "BookClientDao")

 private BookClientDaoRemote bookClientEntity;

 public boolean takeBook(final String isbn,

 final int clientId) throws Exception {

 boolean status = true;

 Book book = bookEntity.getBook(isbn);

 if (book != null && !book.isStatus()) {

 status = false;

 throw new Exception("The book is not available!");

 }

 if (bookClientEntity.numberOfBorrowedBooks(clientId) >

 Constants.MAX_NUMBER_OF_BOOKS_TO_BE_BORROWED) {

 status = false;

 throw new Exception ("The client has borrowed “ +

 “already the maximum amount of books"

 + Constants.MAX_NR_OF_BOOKS_TO_BE_BORROWED

 + "!");

 }

 book.setStatus(false);

 BookClientTO bc = new BookClientTO();

 bc.setBookId(book.getId());

 bc.setClientId(clientId);

 bc.setBorrowDate(new Date());

 bookClientEntity.insert(bc.translateToBookClient());

 return status;

 }

SESSION FACADE

 Consequences

 Introduces a layer that provides services to remote clients

 Exposes a uniform coarse-grained interface

 Reduces coupling between the tiers

 Promotes layering, increases flexibility and maintainability

 Reduces complexity

 Improves performance, reduces fine-grained remote

methods

 Centralizes security management

 Centralizes transaction control

 Exposes fewer remote interfaces to clients

NEXT COURSES

 Refactoring

 Anti-patterns

