DESIGN PATTERNS

CONTENT
JJ2EE Design Patterns

APPLICATION
SERVERS

4 In the 90’s, systems should be client-server

First tier Second tier

-

Fat client Server

O Today, enterprise applications use the multi-tier model
Middle tier

Busi_nesé
logic

Third tier
Y L
First tier L
Blusi_ness) Server
client ogic e -
Services [m

J2EE

0 Main Components

L JavaServer Pages (JSP)
U Used for web pages with dynamic content
L Processes HTTP requests (non-blocking call-and-return)
0 Accepts HTML tags, special JSP tags, and scriptlets of Java code
Separates static content from presentation logic
L Can be created by web designer using HTML tools

U Servlet
U Used for web pages with dynamic content
L Processes HTTP requests (non-blocking call-and-return)
U Written in Java; uses print statements to render HTML
U Loaded into memory once and then called many times
U Provides APIs for session management
U Enterprise JavaBeans (EJB)
U EJBs are distributed components used to implement business logic (no Ul)
L Developer concentrates on business logic

U Availability, scalability, security, interoperability and integrability handled by the J2EE
server

U Client of EJBs can be JSPs, servlets, other EJBs and external aplications
U Clients see interfaces

J2EE

.

Firewall

\ Web Tier)

Middle Tier

Client Tier)

J2BE
C?nn ctor

\ EJBTier)

J _ EISTier

Key: client-side server-side backend
component component component

G HTTP € === "EMOteprocedure (——)

invocation

J2
c?nn ctor

>

via API

backend connectivity

APPLICATIONS SPLIT
ON LEVELS

D
Client Level
Application clients, applets, others GUIs
< 4
.)
Prezentation level -
JSP, Servlets and others Ul elements
(. 4
4 =
Business level > J2EE Faftrens
EJB and others business resources
& 4
a I
Integration level
JMS, JDBC, Connecters .
€ -4
&)
Resource level
Data bases, external systems, resources

PATTERNS
CLASSIFICATION

O Patterns applicable on presentation level
O Patterns applicable on business level

O Patterns applicable on integration level

Core J2EE Patterns, 2nd Edition

Apply 2ero or maong

LEGEND:

B Fresentation Tier
- Business Tier
- Imtegration Tier

Compaosite View

Intercepling Filter

Debegate Control
| NS

Application Contraller

Centralize Control

Front Contraller
Create

Delegate processing l ‘

to Helpers
Contexi Object

Dispatch o Dispatch to
target View Wiew

Compose View
from Sub-Views

View Helper

USES Dizpaich Dispatch TP = 00 UsSEs
ST Front Controlter b Micwr o Viead Frani Controller g :
Lightweight Control Processing Accesg Conirel Processing :
Dispatcher View Business Samvice To Worker
Sanics
Access Bugingss Service AcCess
Business
Invoks Business P ing l Service
Application Service . 4 Business Delegate EL':":.am Service Localor
Delegate Connect and Invokea

Business
Processing

oondtingty fvake Session Facade Transter Object
Business Business
Processing Procassing | | Facade Send
Encapsulate and coordinate for Data ﬂrs:::;::es

Business Object

Value List Handler
Processing Implement Sand

Entity Beans
Transparently
Persist

Composite Entity

e S&rvice Activator Retrigve ' '
. Business List fuses .
hain - ' P
L— AgynCchnonous w = E
Processing Domakn Store Business Dbject !
Detegate : Uses for i
Asynchronous ! Bean-managed [
- Processing : Persistence oend Data i
¥ L}
] 1
]
Web Service Braker _— Data Access Object SEIEEEE. o -

{c) 2003 corej2eepatterns.com. All Rights Reserved.

BUSINESS PATTERNS

Business Delegate

Service Locator

Session Facade

Application Service
Business Object
Composite Entity

Transfer Object

C 000000 DO

Transfer Object
Assembler

O

Value List Handler

BUSINESS DELEGATE

O Problem

[You want to hide clients from the complexity of remote communication
with business service components.

O Forces

J You want to access the business-tier components from your presentation-
tier components and clients, such as devices, web services, and rich
clients.

[You want to minimize coupling between clients and the business services,
thus hiding the underlying implementation details of the service, such as
lookup and access.

J You want to avoid unnecessary invocation of remote services.

J You want to translate network exceptions into application or user
exceptions.

 You want to hide the details of service creation, reconfiguration, and
invocation retries from the clients

BUSINESS DELEGATE

1 Solution

J Use a Business Delegate to encapsulate access to a
business service.

(J The Business Delegate hides the implementation details of
the business service, such as lookup and access
mechanisms.

BUSINESS DELEGATE

WITHOUT APPLAING AFTER BUSINESS DELEGATE
THE PATTERN PATTERN IS APPLIED

Application Server

Application Server

BUSINESS DELEGATE.
STRUCTURE

Chent accesses <<P0OJO>> accesses | BusinessService
BusinessDelegate 1 1 -
1 1.7 -————
|
o i 7
Uses Ilouksup
1 : EJBService || JMSService
<=8ingleton=>= | _ _ __ _ d
ServiceLocator

U Client

Ul Presentation tier code may be JSP, servlet or Ul java code.
U Business Delegate

U A single entry point class for client entities to provide access to Business Service methods.
U LookUp Service

U Lookup service object is responsible to get relative business implementation and provide business object
access to business delegate object.

U Business Service

U Business Service interface. Concrete classes implement this business service to provide actual business
implementation logic.

BUSINESS DELEGATE

Client ServiceLocator BusinessService

I BusinessDelegate I i
create I |
| I
| I
get service I I
lookup |
_ 1]
e — ————— |
| invoke JI_ I I
L {== invoke | I
I
I I::I
T g | I
Invake gL invoke | |
|
|
get ID =
L poe— GetID -___!_ get Handle | Handle
I create
—h
=~ |
Ej; I
convert Handle to |D :
= —————— | I
I

BUSINESS DELEGATE

O Implementation strategies

] Delegate Adapter

J The Business Delegate proves to be a nice fit in a B2B
environment when communicating with Java 2 Platform,
Enterprise Edition (J2EE) based services.

 Disparate systems may use an XML as the integration
language.

O Integrating one system to another typically requires an
Adapter to meld the two disparate system

[Delegate Proxy

BUSINESS DELEGATE.
DELEGATE ADAPTER

B2BClient. B2BAdapter. BusinessService
| | |
| 1. Invoke with XML | |

{z== l
Ejﬂ: Parse XML :
BusinessDelegate. '
1.2; Create |
|
|
|
1.3 Imvoke |
P9 1.3.1: Invoke :
1.3.2: Return Results:

1.5; Return XML

1.4: Prepare XML

———————]

BUSINESS DELEGATE

O Implementation strategies

] Delegate Adapter

[Delegate Proxy

J The Business Delegate exposes an interface that provides
clients access to the underlying methods of the business
service APIL.

) In this strategy, a Business Delegate provides proxy function
to pass the client methods to the session bean it is
encapsulating.

 The Business Delegate may additionally cache any
necessary data, including the remote references to the
session bean's home or remote objects to improve
performance by reducing the number of lookups.

[The Business Delegate may also convert such references to
String versions (IDs) and vice versa, using the services of a
Service Locator.

BUSINESS DELEGATE

| Implementation public class LibraryDelegate {

strategies ;
O Delegate public LibraryDelegate()
Proxy throws ApplicationException {
O Business init();
Delegate }

public void init() throws ApplicationException {

/l Look up and obtain our session bean

try {

} catch (ServiceLocatorException e) {

throw new ApplicationException(e);

BUSINESS DELEGATE

0 Implementation

strategies
d Delegate {
Proxy :
return library.queryAll();
d Concrete ¥4 yAll()
service }

try {
return library.getBook(isbn);

} catch (NoSuchBookException e) {

new ApplicationException(e);

BUSINESS DELEGATE

O Consequences

Reduces coupling, improves maintainability

Translates business service exceptions

Improves availability

Exposes a simpler, uniform interface to the business tier
Improves performance

Introduces an additional layer

Hides remoteness

DCO00D0D0O

BUSINESS DELEGATE

U Related patterns

J Service Locator
d Session Facade
d Proxy

1 Adapter

J Broker

BUSINESS PATTERNS

Business Delegate

Service Locator

Session Facade

Application Service
Business Object
Composite Entity

Transfer Object

C 000000 DO

Transfer Object
Assembler

O

Value List Handler

SERVICE LOCATOR

UProblem

You want to transparently locate business components and services in a
uniform manner.

Forces

JYou want to use the JNDI API to look up and use business components,
such as enterprise beans and JMS components, and services such as data
sources.

dYou want to centralize and reuse the implementation of lookup mechanisms
for J2EE application clients.

JYou want to encapsulate vendor dependencies for registry
implementations, and hide the dependency and complexity from the clients.

(dYou want to avoid performance overhead related to initial context creation
and service lookups.

JYou want to reestablish a connection to a previously accessed enterprise
bean instance, using its Handle object.

SERVICE LOCATOR

1 Solution

1 Use a Service Locator to implement and encapsulate
service and component lookup. A Service Locator hides
the implementation details of the lookup mechanism and
encapsulates related dependencies.

1 Used with

1 Business Delegate

1 Session Facade
 Transfer Object Assembler
1 Data Access Object

SERVICE LOCATOR.
STRUCTURE

U Service

RegistryService

U Actual Service which will
process the request. Reference ==
of such service is to be looked [q,/ |
upon in JNDI server. Client =<Singleton== InitialContext

uses -
O Context / Initial Context ServiceLocator | ! Y525 1

creates I\

U IJNDI Context carries the
reference to service used for
lookup purpose.

U Service Locator

maintains

Ty
Cache

U] Service Locator is a single point
of contact to get services by
JNDI lookup caching the
services.

U Cache

obtains f accesses resolves

|
Vi caches

U Cache to store references of |]
services to reuse them T T T T T T T 7 - T T

U Client

U Client is the object that invokes
the services via ServicelLocator.

==5jngleton==
ServicelLocator

SERVICE LOCATOR

RegistrySenvice

Target

| —
| get instance | InitialContext
fm-—— create
EE—
Cache
create
LI_l h
I
| i
|
T T |
get target |
| - [00kuUp target | lookup target I
|
I
put target I
- - n |
| gettarget | : |

fE==r— lookup target

I
|
|
|
|
|
|
|
|
|
|
|

get from cache

fo= resolve

SERVICE LOCATOR

O Strategies
J EJB Service Locator

- JMS Queue Service Locator
. JMS Topic Service Locator

 EJB si JMS Service Locator

SERVICE LOCATOR.
EXAMPLE

public class EntityManagerServicelLocator {
private InitialContext initialContext;
private Map<String, EntityManager> cache;
private static EntityManagerServiceLocator _instance;
static {
try {
_instance = new EntityManagerServiceLocator();
} catch (ServiceLocatorException se) { }

}

private EntityManagerServiceLocator() throws ServiceLocatorException {
try {
initialContext = new InitialContext();
cache = Collections.synchronizedMap(new HashMap<String, EntityManager>());
} catch (NamingException ne) { throw new ServiceLocatorException(ne.getMessage(), ne);
} catch (Exception e) { trow new ServiceLocatorException(e.getMessage(), e); }

}

static public EntityManagerServiceLocator getinstance(){ return _instance; }

SERVICE LOCATOR

O Consequences

 Abstracts complexity

[Provides uniform service access to clients
 Facilitates adding EJB business components
 Improves network performance

. Improves client performance by caching

SERVICE LOCATOR

O EJB 3.0 Depency Injection

J @Resource
d @Ejb
] It does not replace the INDI mechanism, it just replace the
way in witch a reference is obtain to JNDI
 Example
public class BookDao implements BookDaoRemote {
@PersistenceContext(unitName = "libraryDS")
private EntityManager em;
public void delete(int id) {
Book b = em.find(Book.class, new Long(id));
em.remove(b);

BUSINESS PATTERNS

Business Delegate

Service Locator

Session Facade

Application Service
Business Object
Composite Entity

Transfer Object

C 000000 DO

Transfer Object
Assembler

O

Value List Handler

SESSION FACADE

O Problem

 You want to expose business components and services to remote clients.

O Forces

' You want to avoid giving clients direct access to business-tier
components, to prevent tight coupling with the clients.

[You want to provide a remote access layer to your Business Objects and
other business-tier components.

J You want to aggregate and expose your Application Services and other
services to remote clients.

[You want to centralize and aggregate all business logic that needs to be
exposed to remote clients.

 You want to hide the complex interactions and interdependencies between
business components and services to improve manageability, centralize
logic, increase flexibility, and improve ability to cope with changes.

SESSION FACADE

L Solution

] Use a Session Facade to encapsulate business-tier components
and expose a coarsegrained service to remote clients. Clients
access a Session Facade instead of accessing business
components directly.

O Used with

Business delegate
Business Object
Application Service
Data Acces Object
Service Locator
Broker

Facade

COoO00000

SESSION FACADE.
STRUCTURE

Chient ACCRSSES <=5esSIoNEJB>> [4irpgsps BusinessComponent

= SessionFacade —

1.7 1.7 1.7 1.7

ApplicationService | | BusinessObject | | DataAccessObject

SESSION FACADE

==EJBSession=» ApplicationSenvice ==EJBEntity== ==EJBEntity=> DatafAccessObject
SessionFacade BusinessObject1 BusinessOhject2

£

I
I
| invoke |

invoke

invoke

| invoke |
. =l invoke

| Invoke invoke

¥
-

invoke

imvoke

invoke

| invoke I
4 == gef data

i p;rucess

o ¥ [N S

— ——— — — —

SESSION FACADE

O Stategies

] Stateless session beans
A process that needs a single call to a business component

] Stateful session beans

(A business process that needs to maintain a conversation
with multiple business components

SESSION FACADE

public class implements LibraryFacade { if (bookClientEntity.numberOfBorrowedBooks(clientld) >
@EJB(beanName = "BookDao") Constants.MAX_NUMBER_OF_BOOKS _TO_BE_BORROWED) {
private BookDaoRemote bookEntity; status = false;

throw new Exception ("The client has borrowed “ +
@EJB(beanName = "BookClientDao") “already the maximum amount of books"
private BookClientDaoRemote bookClientEntity; + Constants. MAX_NR_OF_BOOKS_TO_BE_BORROWED
+ " ;

}

book.setStatus(false);

BookClientTO bc = new BookClientTO();

bc.setBookld(book.getld());

bc.setClientld(clientld);

boolean status =true;
Book book = bookEntity.getBook(isbn);

if (book !=null && 'book.isStatus()) { bc.setBorrowDate(new Date()):

status = false; bookClientEntity.insert(bc.translateToBookClient());

throw new Exception("The book is not available!"); return status:

SESSION FACADE

0 Consequences

o000 D0

U OO

Introduces a layer that provides services to remote clients
Exposes a uniform coarse-grained interface

Reduces coupling between the tiers

Promotes layering, increases flexibility and maintainability
Reduces complexity

Improves performance, reduces fine-grained remote
methods

Centralizes security management
Centralizes transaction control
Exposes fewer remote interfaces to clients

NEXT COURSES

O Refactoring

O Anti-patterns

