
DESIGN PATTERNS

COURSE 1

OGANIZATION

 Course

 Each week 2 hours, Room 032

 Laboratory

 Each even school week, Romm 032

 Presence

 Course: minimum 50%

 Laboratory: minimum 50%

 Grade

 Written Exam 50%

 Course activity 1%+ laboratory activity 24%

 Presentation of a pattern 10%

 Project 15%

ORGANIZATION

 Course & laboratories

 available at web.info.uvt.ro/~zflavia

 Contact

 e-mail: flavia.micota@e-uvt.ro

 cab. 046B

COURSE CONTENT

 Design patterns

 Creational

 Structural

 Behavioral

 Refactoring

 Anti-patterns

 J2EE patterns

WAY YOU CHOSE THIS

COURSE?

WAY YOU CHOSE THIS

COURSE?

 Some reasons from

http://www.ida.liu.se/~chrke55/courses/SWE/bunus/DP01_

1slide.pdf

 I could get some easy points.

 Everybody is talking about so it must to be cool.

 If I master this I can added it to my CV.

 Increase my salary at the company.

 Applying patterns is easier than thinking

 A great place to pick up ideas to plagiarize.

SOURCE CODE QUALITY

 What characteristics should be respected in order to

deliver a quality sorce code for a project?

SOURCE CODE QUALITY

 What characteristics should be respected in order to

deliver a quality sorce code for a project?

 Easy to read/understood – clear

 Easy to modify – structured

 Easy to reuse

 Simple (complexity)

 Easy to test

 Implements patterns for standard problems

SOURCE CODE QUALITY

 What influence source code quality?

 Development time

 Costs

 Programmer experience

 Programmer abilities

 Specifications clarity

 Solution complexity

 Requirements change rate, team, …

PATTERNS

 A pattern is a recurring solution to a standard problem, in a

context.

 A Design Pattern systematically names, explains, and

evaluates an important and recurring design.

 Christopher Alexander, a professor of architecture…

 Why would what a prof of architecture says be relevant to

software?

 “A pattern describes a problem which occurs over and over

again in our environment, and then describes the core of the

solution to that problem, in such a way that you can use this

solution a million times over, without ever doing it the same

way twice.”

PATTERNS

 Patterns solve software structural problems

 Abstraction

 Encapsulation

 Information hiding

 Separation of concerns

 Coupling and cohesion

 Separation of interface and implementation

 Single point of reference

 Divide and conquer

PATTERNS

 Patterns also solve non-functional problems

 Changeability

 Interoperability

 Efficiency

 Reliability

 Testability

 Reusability

PATTERNS

 Advantages

 Allow the standard solution reusability at source
code/architectural level

 Allow the source code/architecture documentation

 Facilitate architecture and code understanding

 Known solutions – common vocabulary

 Well documented solution

PATTERNS TYPES

 Architectural Patterns: MVC, Layers etc.

 Design Patterns: Singleton, Observer etc

 GUI Design Patterns: Window per task, Disabled irrelevant things,

Explorable interface etc

 Database Patterns: decoupling patterns, resource patterns, cache

patterns etc.

 Concurrency Patterns: Double buffering, Lock object, Producer-

consumer, Asynchronous processing etc.

 Enterprise (J2EE) Patterns: Data Access Object, Transfer Objects etc.

 GRASP(General Responsibility Assignment Patterns): Low

coupling/high cohesion, Controller, Law of Demeter (don’t talk to

strangers), Expert, Creator etc.

 Anti-patterns= bad solutions largely observed: God class, Singletonitis,

Basebean etc

DESIGN PATTERNS

HISTORY

 1979:Christopher Alexander,architect, “The Timeless Way of

Building”,Oxford Press

 253 patterns that collectively formed what the authors called a

pattern language

 1987:OOPSLA (Object Oriented Programming

System),Orlando, presentation of design pattern to the

community OO by Ward Cunningham and Kent Beck

 1995:Group of Four alias E.Gamma, R.Helm,R.Johnson and

J.Vlissides : “Design Pattern:Elements of Reusable OO

software”

 23 design patterns in three categories

DESIGN PATTERNS

TYPES

3 types of patterns …

 Creational

 address problems of creating an
object in a flexible way. Separate
creation, from operation/use.

 Structural

 address problems of using O-O
constructs like inheritance to
organize classes and objects

 Behavioral

 address problems of assigning
responsibilities to classes. Suggest
both static relationships and
patterns of communication (use
cases)

DESIGN PATERNS

STRUCTURAL

Structural patterns

 Class Structural patterns

concern the aggregation of

classes to form largest

structures

 Object Structural pattern

concern the aggregation of

objects to form largest

structures

 Adapter Pattern

 Bridge Pattern

 Composite Pattern

 Decorator Pattern

 Facade Pattern

 Flyweght Pattren

 Proxy pattern

DESIGN PATTERNS

BEHAVIORAL

 Behavioral patterns

 Concern with algorithms and
assignment of responsibilities
between objects

 Describe the patterns of
communication between classes or
objects

 Behavioral class pattern use
inheritance to distribute behavior
between classes

 Behavioral object pattern use object
composition to distribute behavior
between classes

 Chain of Responsibility
Pattern

 Command Pattern

 Interpreter Pattern

 Iterator Pattern

 Mediator Pattern

 Memento Pattern

 Observer Pattern

 State Pattern

 Strategy Pattern

 Template Pattern

 Visitor Pattern

 Null Object

DESIGN PATTERNS

CREATIONAL

Creational patterns

 Abstract the instantiation
process

 Make a system independent
to its realization

 Class Creational use
inheritance to vary the
instantiated classes

 Object Creational delegate
instantiation to an another
objec

 Factory Method Pattern

 Abstract Factory Pattern

 Singleton Pattern

 Prototype Pattern

 Builder Pattern

 Object Pool Pattern

DESIGN PATTERNS -

EXAMPLES

 Observer in Java AWT and Swing for components actions
callbacks

 Observer in Java watches file for changes (java 7 nio)

 Iterator in C++ STL and Java Collection

 Façade in many Open-Source library to hide the complexity of
the internal runtime

 Bridge and proxy in frameworks for distributed applications

 Singleton in Hibernate and NHybernate

PATTERNS TEMPLATES

Design patterns are described by 4 main characteristics

Pattern name

Meaningful text that reflects the problem e.g. Brige, Mediator

Problem

 intent of the pattern, context, when to apply

Solution

UML-like structure, abstract code

Static and dynamic relationships among the components

Consequences

Results and tradeoff

PATTERNS TEMPLATES.

COMPLETE

 Intent

 short description of the pattern & its purpose

 Also Known As

 any aliases this pattern is known by

 Motivation

 motivating scenario demonstrating pattern’s use

 Applicability

 circumstances in which pattern applies

 Structure

 graphical representation of the pattern using modified UML
notation

 Participants

 participating classes and/or objects & their responsibilities

PATTERNS TEMPLATES.

COMPLETE

 Collaborations

 how participants cooperate to carry out their responsibilities

 Consequences

 the results of application, benefits, liabilities

 Implementation

 pitfalls, hints, techniques, plus language-dependent issues

 Sample Code

 sample implementations in C++, Java, C#, Smalltalk, C, etc.

 Known Uses

 examples drawn from existing systems

 Related Patterns

 discussion of other patterns that relate to this one

PATTERNS, ARHITECTURE

AND FRAMEWORK

 Architectures model software structure at the highest

possible level, and give the overall system view. An

architecture can use many different patterns in different

components

 Patterns are more like small-scale or local architectures

for architectural components or sub-components

 Frameworks are partially completed software systems that

may be targeted at a particular type of application. These

are tailored by completing the unfinished components.

BIBLIOGRAPY

http://www.oodesign.com/

