
DESIGN PATTERNS

COURSE 1

OGANIZATION

 Course

 Each week 2 hours, Room 032

 Laboratory

 Each even school week, Romm 032

 Presence

 Course: minimum 50%

 Laboratory: minimum 50%

 Grade

 Written Exam 50%

 Course activity 1%+ laboratory activity 24%

 Presentation of a pattern 10%

 Project 15%

ORGANIZATION

 Course & laboratories

 available at web.info.uvt.ro/~zflavia

 Contact

 e-mail: flavia.micota@e-uvt.ro

 cab. 046B

COURSE CONTENT

 Design patterns

 Creational

 Structural

 Behavioral

 Refactoring

 Anti-patterns

 J2EE patterns

WAY YOU CHOSE THIS

COURSE?

WAY YOU CHOSE THIS

COURSE?

 Some reasons from

http://www.ida.liu.se/~chrke55/courses/SWE/bunus/DP01_

1slide.pdf

 I could get some easy points.

 Everybody is talking about so it must to be cool.

 If I master this I can added it to my CV.

 Increase my salary at the company.

 Applying patterns is easier than thinking

 A great place to pick up ideas to plagiarize.

SOURCE CODE QUALITY

 What characteristics should be respected in order to

deliver a quality sorce code for a project?

SOURCE CODE QUALITY

 What characteristics should be respected in order to

deliver a quality sorce code for a project?

 Easy to read/understood – clear

 Easy to modify – structured

 Easy to reuse

 Simple (complexity)

 Easy to test

 Implements patterns for standard problems

SOURCE CODE QUALITY

 What influence source code quality?

 Development time

 Costs

 Programmer experience

 Programmer abilities

 Specifications clarity

 Solution complexity

 Requirements change rate, team, …

PATTERNS

 A pattern is a recurring solution to a standard problem, in a

context.

 A Design Pattern systematically names, explains, and

evaluates an important and recurring design.

 Christopher Alexander, a professor of architecture…

 Why would what a prof of architecture says be relevant to

software?

 “A pattern describes a problem which occurs over and over

again in our environment, and then describes the core of the

solution to that problem, in such a way that you can use this

solution a million times over, without ever doing it the same

way twice.”

PATTERNS

 Patterns solve software structural problems

 Abstraction

 Encapsulation

 Information hiding

 Separation of concerns

 Coupling and cohesion

 Separation of interface and implementation

 Single point of reference

 Divide and conquer

PATTERNS

 Patterns also solve non-functional problems

 Changeability

 Interoperability

 Efficiency

 Reliability

 Testability

 Reusability

PATTERNS

 Advantages

 Allow the standard solution reusability at source
code/architectural level

 Allow the source code/architecture documentation

 Facilitate architecture and code understanding

 Known solutions – common vocabulary

 Well documented solution

PATTERNS TYPES

 Architectural Patterns: MVC, Layers etc.

 Design Patterns: Singleton, Observer etc

 GUI Design Patterns: Window per task, Disabled irrelevant things,

Explorable interface etc

 Database Patterns: decoupling patterns, resource patterns, cache

patterns etc.

 Concurrency Patterns: Double buffering, Lock object, Producer-

consumer, Asynchronous processing etc.

 Enterprise (J2EE) Patterns: Data Access Object, Transfer Objects etc.

 GRASP(General Responsibility Assignment Patterns): Low

coupling/high cohesion, Controller, Law of Demeter (don’t talk to

strangers), Expert, Creator etc.

 Anti-patterns= bad solutions largely observed: God class, Singletonitis,

Basebean etc

DESIGN PATTERNS

HISTORY

 1979:Christopher Alexander,architect, “The Timeless Way of

Building”,Oxford Press

 253 patterns that collectively formed what the authors called a

pattern language

 1987:OOPSLA (Object Oriented Programming

System),Orlando, presentation of design pattern to the

community OO by Ward Cunningham and Kent Beck

 1995:Group of Four alias E.Gamma, R.Helm,R.Johnson and

J.Vlissides : “Design Pattern:Elements of Reusable OO

software”

 23 design patterns in three categories

DESIGN PATTERNS

TYPES

3 types of patterns …

 Creational

 address problems of creating an
object in a flexible way. Separate
creation, from operation/use.

 Structural

 address problems of using O-O
constructs like inheritance to
organize classes and objects

 Behavioral

 address problems of assigning
responsibilities to classes. Suggest
both static relationships and
patterns of communication (use
cases)

DESIGN PATERNS

STRUCTURAL

Structural patterns

 Class Structural patterns

concern the aggregation of

classes to form largest

structures

 Object Structural pattern

concern the aggregation of

objects to form largest

structures

 Adapter Pattern

 Bridge Pattern

 Composite Pattern

 Decorator Pattern

 Facade Pattern

 Flyweght Pattren

 Proxy pattern

DESIGN PATTERNS

BEHAVIORAL

 Behavioral patterns

 Concern with algorithms and
assignment of responsibilities
between objects

 Describe the patterns of
communication between classes or
objects

 Behavioral class pattern use
inheritance to distribute behavior
between classes

 Behavioral object pattern use object
composition to distribute behavior
between classes

 Chain of Responsibility
Pattern

 Command Pattern

 Interpreter Pattern

 Iterator Pattern

 Mediator Pattern

 Memento Pattern

 Observer Pattern

 State Pattern

 Strategy Pattern

 Template Pattern

 Visitor Pattern

 Null Object

DESIGN PATTERNS

CREATIONAL

Creational patterns

 Abstract the instantiation
process

 Make a system independent
to its realization

 Class Creational use
inheritance to vary the
instantiated classes

 Object Creational delegate
instantiation to an another
objec

 Factory Method Pattern

 Abstract Factory Pattern

 Singleton Pattern

 Prototype Pattern

 Builder Pattern

 Object Pool Pattern

DESIGN PATTERNS -

EXAMPLES

 Observer in Java AWT and Swing for components actions
callbacks

 Observer in Java watches file for changes (java 7 nio)

 Iterator in C++ STL and Java Collection

 Façade in many Open-Source library to hide the complexity of
the internal runtime

 Bridge and proxy in frameworks for distributed applications

 Singleton in Hibernate and NHybernate

PATTERNS TEMPLATES

Design patterns are described by 4 main characteristics

Pattern name

Meaningful text that reflects the problem e.g. Brige, Mediator

Problem

 intent of the pattern, context, when to apply

Solution

UML-like structure, abstract code

Static and dynamic relationships among the components

Consequences

Results and tradeoff

PATTERNS TEMPLATES.

COMPLETE

 Intent

 short description of the pattern & its purpose

 Also Known As

 any aliases this pattern is known by

 Motivation

 motivating scenario demonstrating pattern’s use

 Applicability

 circumstances in which pattern applies

 Structure

 graphical representation of the pattern using modified UML
notation

 Participants

 participating classes and/or objects & their responsibilities

PATTERNS TEMPLATES.

COMPLETE

 Collaborations

 how participants cooperate to carry out their responsibilities

 Consequences

 the results of application, benefits, liabilities

 Implementation

 pitfalls, hints, techniques, plus language-dependent issues

 Sample Code

 sample implementations in C++, Java, C#, Smalltalk, C, etc.

 Known Uses

 examples drawn from existing systems

 Related Patterns

 discussion of other patterns that relate to this one

PATTERNS, ARHITECTURE

AND FRAMEWORK

 Architectures model software structure at the highest

possible level, and give the overall system view. An

architecture can use many different patterns in different

components

 Patterns are more like small-scale or local architectures

for architectural components or sub-components

 Frameworks are partially completed software systems that

may be targeted at a particular type of application. These

are tailored by completing the unfinished components.

BIBLIOGRAPY

http://www.oodesign.com/

