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Abstract

The aim of this work is to analyze the applicability of
crowding differential evolution to unsupervised clustering.
The basic idea of this approach, interpreting the clustering
problem as a multi-modal optimization one, is similar to
that of unsupervised niche clustering proposed by Nasraoui
et al.[10] but instead of evolving only the clusters centers
and statistically estimating the other parameters (scales
and orientation) we evolve both the centers and the param-
eters of the clusters. Moreover, to simplify the evolutionary
process, especially in the case of high-dimensional data, we
evolve only hyper-ellipsoids parallel with the axes. In order
to model rotated clusters we used a multi-center represen-
tation, i.e. the cluster is covered by many normally oriented
hyper-ellipsoids. Besides the fact that it simplifies the evolu-
tionary process this multi-center representation allows de-
scribing almost arbitrary shaped clusters. Preliminary ex-
perimental results suggest that the proposed approach en-
sures a reliable identification of clusters in noisy data pro-
viding in the same time multi-center synthetic descriptions
for them.

1 Introduction

The aim of a data clustering task is to identify homo-
geneous groups of similar data which satisfies at least the
following conditions: (i) data in each group are sufficiently
similar; (ii) data in different groups are sufficiently dis-
similar. Sufficiently similar and sufficiently dissimilar are
subjective notions so a unique rigorous definition of natu-
ral grouping of data is missing. Moreover, usually we do
not have prior information on the data distribution, thus the
clustering problem is an ill-posed one. These explains the
absence of a perfect clustering method and the existence
of a plethora of algorithms which differs by their underly-
ing basic idea, by their complexity and by their applicability
potential[5]. Some algorithms provide a partition of the data

in clusters, others provide a set of clusters descriptors which
are further used in applying data partitioning rules.

A significant class of algorithms is represented by those
which have as underlying idea the fact that the clustering
process is an optimization one. There are two main direc-
tions here. The first one is that of searching for a set of
clusters (data partitioning) which optimizes some cluster-
ing goodness criteria. The simplest approach here is that
of maximizing the intra-cluster similarity while minimiz-
ing the inter-cluster similarity. Unfortunately such an ap-
proach could lead to degenerate partitions (e.g. each data
defines a cluster) so constraints concerning the number of
clusters or the minimal number of elements in each cluster
should be introduced. These constraints increase the diffi-
culty of the optimization problem and the clustering algo-
rithm should find a trade-off between different criteria. Ap-
proaches based on multi-objective optimization have been
recently proposed [7],[3].

A second optimization approach in clustering is based on
the idea that clusters are high-density regions and identify-
ing them means finding local maxima of a density function.
This approach appears in density-based clustering and two
of the most representative algorithms of this type are DB-
SCAN (Density-Based Spatial Clustering of Applications
with Noise) [1] and DENCLUE (Density Clustering) [4].
An advantage of density-based algorithms is the fact that
they are able to identify the noise in data.

Since the algorithm presented in this work is related, by
the density functions, with DENCLUE we shall briefly de-
scribe its basic idea. DENCLUE uses a measure of den-
sity constructed based on some influence functions which
measure the influence that data have in their neighbor-
hood. A common influence function is the gaussian one,
i.e. the influence a data � has on a data � is expressed as��� ��� ���
	����� ������� ��� ������� ����� ����� where

� � ��� �!� is a dis-
similarity measure. The density in � can then be defined as" � � �#	%$'&)(�*,+ ��� ��� ��� , -/. denoting a neighborhood of � .
The clusters are identified by the so-called density attractors
defined as local maxima of the density function,

" � � � . For



a given data the corresponding attractor is determined by a
local optimization based on gradient information. In order
to identify arbitrarily shaped clusters the concept of high
density path is used. The decision if the density is high or
low is based on a threshold 0 . This threshold is used also
to separate the data from noise and as long as its value is
adequately chosen it leads to a successful cleaning of data.
However the ability of DENCLUE to identify the true clus-
ters is highly dependent on the parameters

�
and 0 .

In order to overcome the difficulty of the optimization
process associated to a clustering problem many researchers
tried to use evolutionary methods. For a review of evolu-
tionary approaches in clustering see [2]. Most of these ap-
proaches address the clustering problem by searching in an
evolutionary manner for a data partition which optimizes a
clustering goodness criterion . Recently, approaches based
on evolutionary multiobjective optimization [3] and multi-
modal optimization [10] have been proposed.

The approach in this paper is related with the last one
and is based on the idea that the clusters descriptors (e.g.
centers and scales) can be obtained by identifying through
evolutionary niching methods all local maxima of a den-
sity function. This idea is similar with that of unsupervised
niche clustering introduced in [10].

The unsupervised niche clustering (UNC) algorithm
evolves a population of cluster centers by using a genetic
algorithm combined with a deterministic crowding mecha-
nism [9] in order to allow the identification of all local max-
ima. A particularity of this approach is the fact that also the
scales and orientation parameters of clusters are adjusted.
However their adjustment is not ensured by the evolution-
ary operators but by estimating them using the current val-
ues of the centers. Thus the method is a hybridization be-
tween a multi-modal evolutionary algorithm and a statistical
estimation method. UNC produces a set of clusters descrip-
tors estimating in the same time the number of clusters. It
supposes that data are distributed according to normal dis-
tributions, thus each cluster will be a hyper-ellipsoid char-
acterized, in the general case, by a mean and a covariance
matrix.

The aim of this work is to analyze the applicability of
Crowding Differential Evolution (CDE) [12] in identifying
the number and the descriptors of clusters. The present ap-
proach starts from the same underlying idea as UNC but
these two approaches differ in: (i) the algorithm used in
evolving the clusters descriptors; (ii) UNC evolves only the
centers while in the proposed algorithm both the centers and
the hyper-ellipsoid scales are evolved; (iii) UNC generates
one descriptor for each cluster while in our approach a set
of descriptors can be associated to the same cluster. The
last property is useful especially for clusters which are not
necessarily hyper-ellipsoidal.

The reason of trying to use differential evolution in clus-

tering is given by the simplicity and effectiveness of DE
algorithms. There are other approaches which use DE in
clustering (see for instance [6]) but they are based on inter-
preting the clustering as a global optimization problem not
as a multi-model optimization one.

The rest of the paper is organized as follows. The next
section presents some details on applying multi-modal op-
timization techniques in clustering. In the third section is
briefly reviewed the crowding-based differential evolution
proposed in [12]. The structure of the proposed algorithm
is presented in section four while experimental results on
some synthetic and real data are presented in section five.
The last section concludes the work.

2 Evolutionary multi-modal optimization in
clustering

The key element in the multi-modal approach in cluster-
ing is constructing a function whose local maxima corre-
sponds to dense regions allowing the identification of clus-
ters centers.

Let 12	43 �65)��7�7�7��8��9;: be a set of < -dimensional data,� = 	 � � 5= ��7�7�7��8��>= � . A natural density function,
�'?A@ >CB@

, is a sum of gaussians:��� � �#	 DE 9F =HGI5 DJ ��!�
K � D� � � � ���8� = ��L (1)

where JNMPO is a normalization parameter end
�

is a dis-
tance function. Different hypotheses concerning the clus-
ters shapes lead to different distances and normalization pa-
rameters, J . The simplest case is when we suppose that all
clusters are spherical of radius

�
. This case corresponds to

the euclidean distance:� �Q � ��� ���#	 D� � >FR G�5 � � R � � R � � � J 	%S �UTV� >�W � (2)

When the clusters are considered to be ellipsoids with the
same orientation as the axes and having the radii

� 5 ��7�7�7�� � >
then

�
is a particular case of the Mahalanobis distance:� �Q�XZY[Y[Y Q]\ � ��� ���#	 >FR G�5 � � R � � R �8�� �R �^J 	 S �UT���� 5 � �#_�_�_ � > � 5 W �

(3)
The general case corresponds to ellipsoids of arbitrary

orientation. In this case the scale and the orientation are
described by a covariance matrix, ` , and

�
is the general

Mahalanobis distance:� �a � ��� ���#	 � � � ����bI`dc 5 � � � ��� � J 	 S ��Te� det `,� 5 W �
(4)
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Figure 1. (a) Normally distributed data; (b),(c) ,(d) Contour plots of the density function for fhgji�k l�m , fngji�kpo , fngqi�k i)m ,
respectively.

Depending on the density function type a cluster of cen-
ter r can be described by

� r � � � , � r � � 5 ��7�7�7�� � > � or
� r � `,� . If

the clusters to be detected are not necessarily spherical then
the first descriptor is not able to capture the cluster struc-
ture. The most flexible variant is the last one because it can
be used to describe arbitrary orientation hyper-ellipsoids.
However when < is large the parameters to be estimated
( < � <ts D �u� � ) could be too large. A compromise solution
is to use the second variant and a multi-center description.
This allow a rotated hyper-ellipsoid to be covered by some
hyper-ellipsoids having the same orientation as the axes (see
Fig.2) whose scale parameters are easier to be estimated
than the covariance matrix ` .
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Figure 2. Covering normally distributed data with el-
lipses. (a) Ellipse parallel with the axes: single-center de-
scriptor; (b) rotated ellipse: multi-center descriptor

The clustering problem can be formulated as follows:
find a set of cluster descriptors, 3 � r]v � � v�� : v G 5xw y , r�v{z@ >e� � v z @ > which approximate the local maxima of the
density function. In the following we shall use a density

function based on the particular Mahalanobis distance (3).
Thus, the density function should be optimized both with
respect to the cluster centers, r]v and to their scales,

� v .
Without introducing constraints on the values of the scales
the natural tendency will be to identify a single large clus-
ter centered almost in the center of the region to which
the data belongs. In order to identify the real clusters the
scales values should be constrained to a range

" �|� �}	~ � 5� = > � � 5��� .U�U� 7�7�7 � ~ � >� = > � � >�,� .�� . The most difficult prob-
lem is to find the appropriate range. This depends on the
number and the size of clusters, information which we do
not have apriori. This problem is similar with that of choos-
ing an appropriate common

�
(as in the case of DENCLUE)

but here the scales values will be further adjusted, thus their
range is not so critical as in the case of constant values.

Figure 1 illustrates the first type density functions corre-
sponding to a set of ellipsoidal clusters (a) for different val-
ues of the parameter

�
((b),(c) and (d)). As figures 1(b),(c)

and (d) suggest, the density function landscape is dependent
on the value of

�
.

Supposing that the data belong to a domain
" � � �C	~ � 5� = > ��� 5��� . ��� 7�7�7 � ~ � >� = > �8� >�,� . � the range for a scale

parameter,
� =

will be
~ � � � � =��� . � � =� = > �u�)� � with

� M}O the
lower bound for the scales range and � M D

a parameter
controlling the upper bound (an empirical study of the in-
fluence of � on the number of detected clusters is presented
in section five).

The clustering problem is thus equivalent with that of
finding all local maxima

� r � � � of the function� � r � � �e	 DE 9F =�G�5 DS � 5 7�7�7 � > ��!� K � D� � �Q X Y[Y[Y Q \ � r ��� = � L
(5)

subjected to the constraints r�z " � � � and
� z " ��� � . WhenE

is large the computation of � � r � � � could be extensive. In



such a situation the sum is reduced by taking in consider-
ation only the terms whose values are larger than a thresh-
old. For instance the sum could be only for �#z�� � r�� where� � r���	�3 � z " � � ��� � Q � r �8� ����� : . In [10] is suggested to
choose � based on the critical values of � � distribution.

In order to identify the local maxima of (5) an evolution-
ary algorithm which employs a niching mechanism can be
used. Such an approach is presented in [10] where a popu-
lation of centers 3]r 5 ��7�7�7�� r � : is evolved by using a genetic
algorithm with gray coding and a deterministic crowding al-
gorithm [9]. After each evolutionary step new values for the
parameters

� 5 ��7�7�7�� � � are chosen such that they maximizes
the density function given in (5). Thus for each population
element, r v , the new values of the parameters

� 5v ��7�7�7�� � >v
are determined by solving the equations � � � r v � � �u��� � R 	 O
with respect to

� R
. Thus for each population element r]v the

new values of the scale parameters are:� Rv 	 ���� � $ = (��I������� = v � � R = � r R v � �$ = (��I������� = v (6)

where � = v;	'��!� K � D� � �Q X� Y[Y[Y Q \� � ��=8� r�vU� L 7 (7)

The values of the scale parameters,
� Rv , used in � = v are the

old values, obtained in the previous step. Thus the new val-
ues of the scale parameters are obtained from the values r)v
corresponding to the current generation and the old values
of the scale parameters.

A simpler adjusting relation can be obtained by maxi-
mum log-likelihood estimation. Let r v be a population ele-
ment and � � r v �, ¡1 the subset of data which satisfy� � r v �e	¢3 � z/1¡� � Q X� Y[Y[Y Q \� � ��� r v �£�¡� : (8)

In order to obtain new values for
� 5v ��7�7�7 � >v depending

on r v and the current values of
� Rv we consider the log-

likelihood function:¤ ��� 5v ��7�7�7�� � >v �	}¥H¦¨§£© = (��I��� � � 5ª �u« S Q X� Y[Y[Y Q \� ��!� K � 5� $ >R G�5¬ .�®¯ c � ® �Q ®�±° � L	}¥H¦¨§ 5� ª �u« S Q X� Y[Y[Y Q \� � card ²�³p´ ��µ � 5� $ = (��I�¶� � ��$ >R G�5 ¬ . ® ¯ c � ® �Q ®� ° �
(9)

Thus� ¤ ��� 5v ��7�7�7�� � >v �� � Rv 	 � card � � r v ���� Rv s F= (��I��� � � � � R = � r R v ������ Rv ��·
(10)

and the maximum likelihood estimation of
� R v is:� R v 	j¸ � $ = (��I��� � � � � R = � r R v � �

card � � r v � 7 (11)

This adjusting relation is similar with the binarized version
proposed in [10] while � used in (8) is related to the thresh-
old parameter used in [10]. However in [10] no maximum
likelihood arguments are given. We shall use the relation
(11) to adjust the scale parameters in order to compare the
hybrid CDE (similar to UNC) with the simpler fully evolu-
tionary variant.

3 Crowding differential evolution

Differential evolution has been proposed in [11] as an
heuristic, inspired by simplex methods, able to efficiently
solve difficult optimization problems on continuous do-
mains.

Its particularity consists in the search operator based on
an internal perturbation scheme not on an external one as
is usual in classical mutation operators. To summarize the
particularities of the DE algorithm let us consider a simple
unconstrained maximization problem of a function

�¹? "  @ > B @
: find �Aº z "   @ > such that

��� �6º �¼» ��� � � for
all � z "

. Let us denote by 1½	 � �65U��7�7�7��8� � � the current
generation and by � = the offspring corresponding to �A= .

Different schemes of constructing � = 	 � � 5= ��7�7�7�� � >= �
starting from the elements of 1 have been proposed. The
most frequently used is:

� R= 	�¾ � R ¿�À shÁ _ � � R ¿ X � � R ¿�Â � � with probability Ã �� R = � with probability
D � Ã �

(12)
for ÄÅzÆ3 D ��7�7�7�� < : . In eq.(12) Ç 5 , Ç � , Ç · are distinct indices
randomly selected from 3 D ��7�7�7���È¹: , Áqz � OÉ� � � is a param-
eter which controls the magnitude of the perturbation andÃ � z ~ OÉ� D � is a probability value which controls the ratio
of new components in the offspring. The selection step of
classical DE is a simple one: an offspring, � = , replaces its
parent, ��= , only if it is better (

��� � = �£» ��� � = � ).
Recently, some DE variants for multi-modal optimiza-

tion problems have been proposed [12], [14]. The simplest
of them is the crowding-based differential evolution (CDE)
proposed by Thomsen in [12]. The basic idea of (CDE) is to
modify the classical DE by introducing a crowding mecha-
nism in the selection step. The general structure of CDE al-
gorithm is described in algorithm 1. The unique difference
between CDE and the classical sequential differential evo-
lution is only in the selection step where the new generated
element, � = doesn’t replace �A= but the element in the popu-
lation which is most similar to � = . This means that CDE is
based on a global crowding mechanism which implies the
computation at each step of the distances between the new
generated offspring and all the population elements. This
global computation is a significant disadvantage only when
working with large populations. The effect of this crowding



Algorithm 1 CDE algorithm
1: initialize the population 1
2: repeat
3: for all �#zÊ3 D ��7�7�7��8ÈÊ: do
4: construct � = using (12)

find the element Ë most similar to � =
5: if

��� � = �,» ��� Ë�� then
6: replaces Ë with � =
7: end if
8: end for
9: until a stopping condition is satisfied

mechanism is that a fixed-size population concentrates on
the local maxima of the objective function. In order to ex-
tract the approximation of local maxima a post-processing
step should be applied. This post-processing step can be
based either on computing distances between population el-
ements or on an heuristic valley detection [13].

4 CDE-based clustering

We shall describe an algorithm for finding clusters de-
scriptors

� r�v � � vU� by applying the crowding differential evo-
lution to the objective function (5). Small clusters having
the same orientation as the axes could be described by a sin-
gle descriptor while large or rotated clusters will be finally
described by a set of descriptors. The general structure of
the algorithm is presented in algorithm 2.

We consider a population of È elements. The population
size should be at least large as the number of clusters we
expect to detect. Each element of the population is a pair� r � � � , rNz " � � � , � z " �|� � . The centers are initialized
with elements randomly selected from the set of data while
the scales are randomly selected in

" ��� � . Both the centers,r = , and the scales,
� = , are evolved based on the DE rule (12).

A new generated element is accepted only if it satisfies the
constraints. Since the scale parameters should be positive
when generating new values for them, the relation � R ¿�À sÁ _ � � R ¿ X � � R ¿�Â � is replaced with its absolute value. Another
difference from the original CDE is the distance used in the
crowding mechanism: instead of the euclidean distance we
used the particilar case of the Mahalanobis distance 3.

After applying the CDE to the population, the clusters
and their descriptors are determined by post-processing the
obtained population.
Representatives collecting. The first postprocessing step
aims to extract some representatives from the population.
Each representative, Ì , has three components: the center,r � Ì!� , the scale parameters,

�Í� Ì!� and the label
¤ � Ì�� . The ba-

sic idea of this step is to iteratively construct a set of labelled
representatives, Î%	¢3�Ì 5 ��7�7�7�� Ì y : starting from the empty
set. The center and the scale of the first representative are

initialized with the first element of the population and its
label is set to

D
. Then for each element, � 	 � r � � � � �Í� � ��� ,

of the population starting with the second one the nearest
representative, Ì º 	 � r � Ì º � � �Í� Ì º � � ¤ � Ì º �8� , is determined.
This representative is determined by using the Mahalanobis
distance between r � � � and r � Ì!� with respect to the parame-
ters

�Í� Ì!� . Considering the distances
� 5 	 � Q��HÏ�Ðx� � ��� Ì!� and� � 	 � Q�� . � � ��� Ì�� the following situations are analyzed:

(i) If
� 5ÒÑ Ó]5 or

� � Ñ Ó]5 then the representa-
tive Ì º should be modified to include the information
given by � : r � Ì º �q	 � r � Ì��ÔsÕr � � �8�u� � and

� R � Ì º �Ö	×ÙØ �3 � R � Ì º � � � R � � � : for all ÄhzÚ3 D ��7�7�7�� < : . The label ofÌ º remains unchanged. This situation is illustrated in the
bi-dimensional case in Figure 3 (the dashed ellipse corre-
sponds to the new descriptor obtained).

(ii) If
� 5 M Ó � and

� � M Ó � then a new representative is
generated. Its center and its scale parameters are those of� and its label is a new one, obtained by incrementing the
largest existing label.

(iii) In all the other cases a new representative is gen-
erated having the same center and parameters as � but the
same label as Ì º .

The parameters Ó 5 and Ó � are some thresholds which de-
fines the influence area of a center and satisfy ÓU5 � Ó � .
Labels refinement. Due to the iterative manner of con-
structing the set of representatives it is possible that rep-
resentatives which should describe the same cluster be dif-
ferently labelled. To avoid such situations the representa-
tives set is repeatedly scanned and for each pair

� Ì = � Ì v �
for which

� Q���Ï ¯ � � Ì = � Ì v � ÑÕÓ � or
� Q���Ï � � � Ì = � Ì v � ÑÕÓ � and¤ � Ì = �
Û	 ¤ � Ì v � then the label of the worse representative

(with respect to the fitness function) is replaced with the
label of the better one. This iterative process should con-
tinue until no such pairs are found. However it is possible
that this never happens. Let us consider, for instance, three
representative, Ì 5 , Ì � and Ì · satisfying

� Q��HÏ Â � � Ì 5)� Ì � �,� Ó � ,� Q���Ï Â � � Ì · � Ì � �£� Ó � , ¤ � Ì 5 ��Û	 ¤ � Ì · � and � � r � Ì 5 � � �Í� Ì 5 �8� M� � r � Ì � � � �Í� Ì � �8� , � � r � Ì · � � �Í� Ì · �8� M}� � r � Ì � � � �Í� Ì � ��� . In this
situation when is analyzed the pair

� Ì 5 � Ì � � then the label
of Ì � is changed with that of Ì 5 and when the pair

� Ì � � Ì · �
is analyzed the label of Ì � is changed with the label of Ì ·
and so on. To avoid such situations, in the current imple-
mentation we stopped the iterative process after a maximal
number of cycles. A better approach would be to modify
the label of Ì 5 or Ì · such that they become identical.
Data classification. After the previous steps each cluster
will be described either by one representative (uni-center
description) or by many representatives (multi-center de-
scription). Anyway in order to classify the data, the near-
est representative is determined and its label will be given
to the data. However if the distance between the data and
the nearest representative is larger than a given value, Ó ·
then the data is considered to noise (it does not belong to a



Algorithm 2 CDE-based clustering
1: initialize the population
2: repeat
3: for all �#zÊ3 D ��7�7�7��8ÈÊ: do
4: construct a new r =
5: construct a new

� =
6: find the element

� r � � � most similar to
� r = � � = �

7: if � � r = � � = �£» � � r � � � then
8: replaces

� r � � � with
� r = � � = �

9: end if
10: end for
11: until a stopping condition is satisfied3 Postprocessing stage: :
12: Collect representatives 3]Ì 5���7�7�7�� Ì yÜ: from the popula-

tion and label them
13: Refine the representatives labels
14: Classify the data
15: Eliminate small clusters and reclassify the data

-2 -1 0 1 2
-1

-0.5

0

0.5

1

1.5

Figure 3. Descriptors merging

cluster). The noisy data could be considered to belong to a
separate cluster labelled with a zero value.
Small cluster deletion. The final step is a refinement one
used to eliminate some small clusters. The data belonging
to clusters which have a number of elements which is less
than a given percent of the data number are reassigned to
other clusters based on the same idea of the nearest repre-
sentative.

As the results in the next section illustrate the algorithms
behavior is influenced by the values of the parameters ÓU5 , Ó �
and Ó · ( Ó)5 � Ó � � Ó · � .
5 Experimental analysis

The aim of the experiments was multiple: (i) to analyze
the ability of the CDE-based clustering algorithm to iden-
tify clusters and their representatives; (ii) to analyze the in-
fluence of the upper bound of scale parameters on the num-
ber of identified clusters; (iii) to compare two variants of
adjusting the scale parameters: that based on the differen-

tial evolution operator (as in algorithm 2) and that based on
maximum log-likelihood estimation (in step 5 of algorithm
2 the relation (11) is used).

In the experiments we used both synthetic and real data.
The synthetic data are bi-dimensional in order to allow a vi-
sual inspection of results. We generated two types of data:
(i) based on normal distributions with different covariance
matrices (see Figure 4(a)); (ii) based on a uniform distri-
bution in the interior of some geometric figures (see Figure
4(e)). In both cases there are Ý clusters and a uniformly
generated noise has been superposed on these clusters.

The real data which we used are classical ones (from UCI
Machine Learning Repository, http://www.ics.uci.edu/ Þ
mlearn/MLRepository.html): (i) Iris data (150 data, 4 at-
tributes, 3 classes); (ii) Glass data (214 data, 9 attributes, 6
classes); (iii) Pima data (768 data, 8 attributes, 2 classes);
(iv) Thyroid data (215 data, 5 attributes, 3 classes).

Both synthetic and real data have been normalized by
dividing each attribute to the difference between the largest
and the smallest value corresponding to that attribute.

Even if differential evolution is sensitive to the choice
of its control parameters (Ã and Á ), preliminary tests sug-
gested that no significant differences are obtained by chang-
ing Ã and Á . Thus in all tests we used the values Ãß	 OÉ7 à andÁá	 O�7[â . Concerning the population size and the number
of generations most tests have been executed for È 	 � O
and â�O generations. The parameters involved in the post-
processing steps had the following values: Ó 5 	 D

, Ó � 	 S �
and Ó · 	 S â .

The results obtained for the synthetic data are illustrated
in Figure 4. These results were obtained for both types of
synthetic data for �ã	 � O , Ó 5 	 D

, Ó � 	 S ä and Ó · 	S â . By visual inspection we can see that the CDE-based
clustering algorithm is able to identify those seven clusters
and associate descriptors to them. However with respect to
noise identification the algorithm should be further refined.

One of the most undesirable property of CDE-based
clustering (and of UNC algorithm as well) is the depen-
dence of the number of identified clusters on the upper
bound of the scale parameters,

� � =��� . � � =� = > ���)� . As we
would expect for small values of � the algorithm detect a
small number of clusters (even one single cluster) and as �
becomes larger the number of identified clusters increases.
Some results, obtained by ä O independent runs, concerning
the dependence of the number of identified clusters on the
parameter � are illustrated in Figure 5 for the normal dis-
tributed and Iris data. The error bars in the figure indicate,
especially in the case of Iris data, that the number of de-
tected clusters has a high variance. In [10] is suggested to

use for unsupervised niche clustering �¢	 � å � �> w æ Y ç�çuè ��<
with ���> w æ Y çuç�è a critical value of the chi-squared distribution.

To compare the two variants for adjusting the scale pa-
rameters: differential evolution operator or maximum log-
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Figure 4. Results for the synthetic data. (a),(e) Initial data; (b),(f) Representatives centers and ellipses corresponding to scale
parameters multiplied by é�ê ; (c),(g) Classified data; (d),(h) Data classified as noise.
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Figure 5. Dependence of the number of detected clusters
on the parameter ë . (a) Normally distributed data; (b) Iris
data.

likelihood estimation we computed the mean and standard
deviation of the detected number of clusters and of a clas-
sification error for four real data sets (Iris, Glass, Pima
and Thyroid). Since for these data the real classification
is known we used the error classification error presented in
[8]: ì Ç)Ç;	 �E � E � D � F =|í R � = R (13)

with� = R 	ïîð ñ O if class
� � = �e	 class

� � R � and
¤ � � = �#	 ¤ � � R �

class
� � = ��Û	 class

� � R � and
¤ � � = �Û	 ¤ � � R �D

otherwise
ì Ç)Ç expresses the ratio of data pairs which are not classi-
fied by the algorithm as is expected (data belonging to the
same class receives the same label while data belonging to
different classes receives different labels). The success ra-
tio in Table 1 expresses the number of cases when the right
number of clusters has been detected.

The results in Table 1 suggest that the variant based on
maximum log-likelihood estimation for scale parameters is
slightly better. However it involves more computations than
the variant based only on DE operators and cannot be ap-
plied for non-differential density functions.



Data No. clusters Succ. Error �
Mean Std.dev. Mean Std.dev.

CDE-clustering
Iris 3.20 1.35 8/30 0.19 0.06 5
Glass 6.53 2.61 6/30 0.42 0.01 5
Pima 5.16 1.86 2/30 0.48 0.01 5
Thyroid 2.43 1.76 5/30 0.35 0.04 10

CDE-clustering + maximum log-likelihood estimation
Iris 3.03 0.87 13/30 0.22 0.05 5
Glass 6.90 2.97 6/30 0.56 0.04 5
Pima 2.86 1.11 9/30 0.47 0.005 5
Thyroid 1.93 1.09 5/30 0.27 0.03 10

Table 1. Experimental results

6 Conclusions and open questions

Interpreting the clustering problem as a multi-modal op-
timization one can lead to algorithms able to identify both
the number of clusters and their descriptors. Based on
the idea similar to that of unsupervised niche clustering
[10], the CDE-based clustering analyzed in this work al-
lows identifying clusters of arbitrary shapes by allowing
multi-center descriptions for them. Multi-center descrip-
tions of clusters offer the possibility of specifying in a syn-
thetic manner arbitrary shaped clusters.

The CDE-based clustering seems to be effective for bi-
dimensional noisy data but its behavior is highly sensitive to
the constraints imposed on the scale parameters, especially
for high-dimensional data. On the other hand the number
and size of detected clusters are influenced by the parame-
ters Ó]5 , Ó � and Ó · . The values used in the experiments have
been empirically established. Finding rules to determine
appropriate values for these parameters is an open question.

Besides the simplicity of the approach applying the dif-
ferential evolution operator both for centers and for scale
parameters has the advantage that it can be easily applied
also for non-differential density functions. The CDE-based
clustering approach can be applied in a similar manner for
hyper-rectangles instead of hyper-ellipsoids. This could im-
prove the clustering quality for arbitrary shaped clusters.
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