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Abstract. Recently, some extensions of differential evolution to mul-
timodal optimization have been proposed. The aim of this paper is to
provide a comparative study of them and to propose a hybrid version in
order to overpass some of their deficiencies. The comparative analysis is
based on numerical experiments on some test functions.
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1 Introduction

Multimodal optimization deals with locating all global (or even local) optima of
an objective function. From a practical viewpoint, multimodal optimization is
motivated by at least two reasons [10]: (i) by encouraging the location of mul-
tiple optima the chances of locating the global one may be improved; (ii) in a
design context, identifying a set of high-quality solutions can suggest to the de-
cision maker some viable alternatives. Due to their work with populations, the
evolutionary algorithms (EAs) are good candidates for multimodal optimiza-
tion. However their classical structure based on successively applying mutation,
recombination and selection operators without encouraging the simultaneously
search for different potential optima leads to find only the global optimum.
Therefore different techniques having the aim of locating and maintaining dif-
ferent potential optima have been proposed in the last years.

The basic idea of these methods is to impose the formation of different so-
called species into the population such that each one will identify an optimum.
This speciation can be an implicit one (based on some techniques, different
species emerges into the population) or an explicit one (the population is expli-
citly divided into subpopulations).

Implicit speciation can be assured by the so-called niching methods. Two
well-known niching techniques are: sharing [5] and crowding [13]. The sharing
technique interferes with the selection step and consists in derating the individual
fitness depending on the number of similar individuals. The crowding technique
interferes with the replacement of the generation of parents with the offspring’s
one by favoring replacements between similar individuals.



Explicit speciation by subpopulation models attracted the attention of EAs
researchers due to its relationship with the parallelization models of EA. Two of
these models are proposed in [4] and [10].

If the first multimodal evolutionary approaches were based mainly on the
genetic algorithms paradigm (binary encoding, classical crossover and muta-
tion operators) recently other evolutionary paradigms have been extended to
multimodal optimization. Thus in [2] genetic algorithms with real encoding are
extended to multimodal optimization and in [7] is proposed an extension of evo-
lution strategies to locate multiple optima.

Following the same idea on extending to multimodal optimization other EAs
successfully applied in global optimization, recently some variants of differen-
tial evolution (DE) [14] have been proposed [6],[15],[18]. The motivation of these
extensions is a natural one if we take into account the fact that differential evolu-
tion is one of the simplest and in the same time most efficient global optimization
methods.

The aim of this paper is to compare the abilities of some DE extensions to
locate and maintain multiple optima and to propose a hybridization between
the crowding DE [15] and multi-population DE [18]. The motivation of this
hybridization is to reduce the cost of the global crowding process used in original
crowding DE and to increase its parallelization potential.

The paper is organized as follows. The next section summarizes the par-
ticularities of DE algorithms. In section three are presented the current DE
extensions for multimodal optimization and is introduced the multipopulation
crowding DE. Section four is devoted to comparative numerical results and the
last section concludes the work.

2 Differential Evolution

Differential evolution has been proposed in [14] as an heuristic, inspired by sim-
plex methods, able to efficiently solve difficult optimization problems on con-
tinuous domains. Since its invention it has been extended to solve: discrete op-
timization problems [8], constrained optimization problems [9], multi-objective
optimization problems [1],[12] and, recently, multi-modal optimization problems
(6],[151, [18].

Its particularity consists in its search operator based on an internal perturba-
tion scheme not on an external one as is usual in classical mutation operators. To
summarize the particularities of the DE algorithm let us consider a simple uncon-
strained maximization problem of a function f : D — R: find x* € D C R" such
that f(z*) > f(z) for all z € D. Let us denote by X = (21, ... ,zy,) the current
generation, by z, the best element of X (f(z«) > f(z;) for all i € {1,...,m})
and by Y = (y1,... ,ym) the offspring population (y; is considered the offspring
of wl)

Different schemes of constructing y; = (yi,...,y") starting from the ele-
ments of X have been proposed. We exemplify here only two of them, those
used in the next sections. The first one is that which is most used:



yi = xl, + F - (], —x],), with probability p. i=Th
‘ x, with probability 1 — p. ’
In relation (1) 71, 72, r3 are distinct indices randomly selected from {1,... ,m},

F € (0,2) is a parameter which controls the magnitude of the perturbation and
pe € [0,1] is a probability value which controls the ratio of new components in
the offspring.

Another scheme is characterized by replacing z,, with the best element of
the population, z,. The variant used in section 3 is characterized by p. = 1 thus:

yfzwi-{—F-(w{;l —CU%), j=1,n (2)

The DE behavior is highly influenced by the values of the control parameters
pe. and F. If no diversity preserving techniques are applied, the most frequent
problem of DE is premature convergence. Different techniques of avoiding pre-
mature convergence have been proposed. One of them consists in adjusting the
values of parameters F' and p. such that the perturbation step allows keeping
the population diversity to an acceptable level [17].

The selection step is a simple one: an offspring, y;, replaces its parent, x;, if
it is better (f(y;) > f(z;)). The general structure of DE algorithm is similar to
that of classical evolutionary algorithms. Either generational (synchronous) or
steady state (asynchronous) strategies can be used (Fig. 1).

Population initialization Population initialization
REPEAT REPEAT
FORi=1,m FORi=1,m
construct y; using (1) or (2) construct y; using (1) or (2)
FORi=1,m IF f(y:) > f(z;) replaces z; with y;

IF f(y:;) > f(z;) replaces z; with y; UNTIL a stopping condition is satisfied
UNTIL a stopping condition is satisfied

(a) (b)

Fig. 1. The structure of a DE algorithm. (a) generational strategy; (b) steady-state
strategy.

3 Differential Evolution extensions for multimodal
optimization

Crowding based DE [15]. The starting idea in developing the crowding based
DE (CDE) was to apply to the classical steady state DE algorithm (Fig.1(b))



(based on a type 1 perturbation) some niching techniques in order to increase
its ability to locate and maintain multiple optima. Both sharing and crowding
have been tried but as is reported in [15] the crowding version outperforms the
sharing one when tested on a set of test functions.

Algorithm’s structure. The particularity of the CDE consists in a global crowd-
ing, i.e. when a new offspring, y; is generated it is compared not with its par-
ent, x;, but with the most similar element from the current population, z € X
(d(z,y;) < d(z,y;) for all z in X). As measure of similarity is used the euclid-
ian distance. If y; is better than z then y; replaces z. This approach imposes
the computation at each step of the distances between the offspring and all the
elements of X. The general structure of CDE algorithm is described in Fig. 2.

Population initialization
REPEAT
FORi=1,m
construct y; using (1)
find the element z € X most similar to y;
IF f(y;) > f(2) replaces z with y;
UNTIL a stopping condition is satisfied

Fig. 2. The structure of crowding DE (CDE)

Pros. The most important advantage of CDE is its simplicity since it can be
obtained from DE by only a few modifications.

Cons. A possible disadvantage of CDE could be the global character of crowding.
Besides the fact that for large populations this could increase the computational
effort it also precludes CDE from efficient parallel implementations.

Multiresolution multipopulation DE [18]. The main idea of multiresolu-
tion multipopulation DE (MMDE) is to divide the population into equally sized
subpopulations. In each subpopulation a generational based DE (Fig. 1 (a)) is
applied for a given number of generations. After this, a migration process can
occur. When a subpopulation converged, the optima that it found are collected
into an archive. Since each subpopulation locates at most one optimum, when
many unequally spaced optima have to be found it may be useful to reiterate
the search process through a few search epochs. This idea of reusing a subpop-
ulation after that it found an optimum is similar to that proposed in roaming
algorithms [11]. The particularity of MMDE consists in the controlled subpop-
ulations (re)initialization. This is based on a resolution factor concept and has
the aim of ensuring the search space exploration and avoiding the redundant
search.

Algorithm’s structure. Let us consider that the population is divided in s sub-
populations X1, ..., X and the search domain is D = H?zl[aj, bi]-



Initialize the archive: A := ()
Initialize the epoch counter: e :=1
REPEAT
Compute the resolution factors: rj = (b; —a;)/(s- e)l/n, ji=1n
(Re)initialize the subpopulations X1,... , X,
REPEAT
Apply DE to Xy, ..., X, for 7 generations
Apply migration
UNTIL all subpopulations converged
Add the best elements of subpopulation to the archive
er=e+1
UNTIL a stopping condition is satisfied

Fig. 3. The structure of multiresolution multipopulation DE (MMDE)

The initialization is based on a decomposition of D in subdomains: each sub-
population will be initialized with random elements selected from a subdomain.
The subdomains are defined based on discretization steplengths called resolution
factors, r;. For instance r; = (b; — a;)/s'/™ and the subpopulation X; will be
initialized in D; = [a{,b{] x ... X [a},,b}], where a% = a; +r;ki, b% = a% 4 r;, with
k; randomly selected from {0, 1,...,[s'/"] — 1} independently for each subpop-
ulation and for each component. During the evolution, the subpopulations are
not restricted to the subdomain affected in the initialization step. During the
evolution the subpopulations are not necessarily non-overlapping, therefore dif-
ferent subpopulations could find the same optimum. When passing from a search
epoch to another one, the subpopulations are reinitialized based on a finer dis-
cretization of the domain, i.e. on smaller resolution factors. A simple rule to
choose the resolution factors in epoch e is: r¢ = (b; —a;)/(s-€)'/", j = T,m. For
each of the s subpopulations, a subdomain is randomly chosen from a number of
s - e possible subdomains. The elements of the subpopulations are selected using
a uniform distribution only in the first epoch. In the next epochs the selection
distribution is influenced by the elements already placed in the archive. To be
more specific, let us consider that at epoch e the archive contains the elements
a1, ae, ... ,a and the subdomain affected to subpopulation X; is D;. During
the initialization of X;, an element z, randomly selected from D; is accepted
with a probability P, determined using a sharing function:

_ 1 o(s,0) = 1 4580 it d(z,0) <1, /2
1+ Y0 oz, o)

0 otherwise
with r, = (Z?Zl r$)/n and d denotes the euclidian distance. The sharing func-
tion is computed with respect to the elements belonging to the current archive,
the resolution factors playing the role of a niche radius. The acceptance prob-
ability is high only for elements that are not too close to the optima already

P,(x)

(3)



placed in the archive. This idea is similar to that of derating the fitness function
used in sequential niching [3] but here one derates the acceptance probability.
If in the initialization of a subpopulation element a given number of successive
rejections occur, the subdomain is replaced with a new randomly selected one.

The migration used in MMDE is a random one characterized by the fact that
each element of a subpopulation can be swapped with a given migration probabil-
ity with a randomly selected individual from a randomly selected subpopulation.
Due to the change of information between subpopulations, the migration avoids
the premature convergence but in the same time it can guide different subpopu-
lations toward the same optimum. Thus, as results reported in [18] suggest when
the aim is to locate multiple optima the migration probability should be small,
even zero, which means no migration. At each search epoch the best element of
each subpopulation is added to the optima archive. To avoid redundancy in the
archive (presence of multiple copies of the same optimum) two techniques are
used:

(i) A new optimum is added to the archive only if it is sufficiently dissimilar
from the already stored optima. A candidate is added to the archive only if
its distance to the other optima is greater than a threshold depending on the
current resolution factor, . (e.g. r./4).

(ii) A sufficiently dissimilar candidate is added to the archive only if it belongs
to a different hill (in the case of a maximization problem) than the other elements
of the archive. The decision procedure is based on the idea of hill-valley function
introduced in [16]. To decide if there is a valley between two elements z and y
a given number of convex combinations of x and y are generated. If for at least
one z = cx + (1 — ¢)y the relation f(z) < min{f(x), f(y)} holds then one can
decide that there exists a valley between = and y. If for a candidate optimum
there is found an element in the archive such that no valley is detected between
it and the candidate then the candidate is not added to the archive.

Pros. The main advantage of MMDE is the fact that it does not use a global
processing step (e.g. clustering) allowing to be efficiently implemented in parallel.
The communication between subpopulations is assured, even in the absence of
migration, through the archive.

Cons. Each subpopulation locates at most an optimum, thus many subpopula-
tions or a multiresolution approach are needed when multiple optima have to be
located. The multiresolution approach, despite the fact that avoids the specifica-
tion of a niche radius, increases the complexity of DE. It is obvious that MMDE
is not as simple as CDE is. The numerical results in [18] suggest that MMDE is
sensitive to the values of m (subpopulations size), s (number of subpopulations)
and epax (the maximal number of epochs).

MultiDE [6]. The approach in MultiDE is similar to that of MMDE since it also
considers equally sized subpopulations. However the number of subpopulations is
variable (subpopulations appear or disappear). A structure similar to an archive,
called ”population 0” is also used. When an element of a subpopulation is similar
to an element from ”population 0” then it is dropped from further computations.
The similarity is established based on a so-called precision parameter controlled



by the user. This is somewhat similar to the resolution factor in MMDE. Mul-
tiDE uses a mechanism to encourage the search for different optima based on a
minimum spanning distance. For each new trial offspring the distance between
it and the other subpopulations is computed and if this distance is smaller than
a user established parameter then the offspring is perturbed by moving it in a
opposite direction. Over generations, the parameter corresponding to minimum
spanning distance is slowly decreased but it is reset to the initial value every
time the number of subpopulations is increased. Another specific parameter is
the ezpiration time, i.e. the number of generations after that a subpopulation is
eliminated if it did not discover a new optima.

Pros. As in the case of MMDE the subpopulations approach opens the possibility
of parallel implementations. However the computation of distances between the
trial offspring and all subpopulations could an impediment be for an efficient
parallelization.

Cons. The main disadvantage of MultiDE is the presence of some supplemen-
tary control parameters (precision parameter, minimum spanning distance and
expiration time).

A multipopulation crowding DE. Starting from the main deficiency of CDE,
that of the presence of a global processing step we propose a multipopulation
variant of CDE. The basic idea is to use in a multipopulation DE a niching
technique based on crowding.

The proposed technique have the following characteristics: (i) since the crowd-
ing technique allows each subpopulation to locate many optima the subpopu-
lation reinitialization is no more necessary; (i) the crowding computation is
limited to subpopulations, thus a global processing step is avoided.

Algorithm’s structure. The multipopulation crowding DE (MCDE) is character-
ized by applying CDE for each subpopulation:

Initialize the subpopulations Xi,... , X;
REPEAT
Apply CDE to X, ..., X, for T generations

Apply migration
UNTIL a stopping condition is satisfied
Collect the optima found by all subpopulations

Fig. 4. The structure of multipopulation crowding DE (MCDE)

The migration strategy can be the random one used in MMDE. After the
subpopulations converged, the optima they found are collected. Since different
subpopulations can found the same optimum only those sufficiently dissimilar
or belonging to different hills are collected. This process is similar to that of
archiving used in MMDE.



4 Nwumerical results

The aim of the numerical tests is twofold: (i) to compare the ability of crowding
DE and of multiresolution multipopulation DE in solving multimodal optimiza-
tion problems; (ii) to analyze the behavior of multipopulation crowding DE.

Due to the similarity of the approach in MMDE and MultiDE we conducted
the comparative study toward CDE, MMDE and the proposed hybrid variant.

The measures used to evaluate the analyzed algorithms are: (i) success rate
- SR (the ratio between the number of cases when all optima have been located
with the desired accuracy and the total number of runs); (ii) averaged number of
found optima-(P); (iii) averaged number of objective function evaluation-(nfe)
(computed in case of success). For MMDE the averaged number of epochs, (e),
has been also computed. All results have been obtained by processing the results
of 30 independent runs.

The DE specific parameters were chosen as follows: p. = 0.9 and F' = 0.5 for
CDE and MCDE while for MMDE they were adapted according to the adapta-
tion rules proposed in [17]. In MMDE the evolution of a subpopulation is stopped
when it has lost its diversity. The migration interval (number of iterations be-
tween migrations) is set to 7 = 20. The test functions are summarized in Table
1 and are discussed in the following.

Function Expression Domain
Himmelblau fi(z,y) = 200 — (2 +y — 11)° — (z +y° — 7)° [—6, 6]
SieHump ey o (4 — 2007 4 2 /3)e? + oy + 407 — 1y [=1.9, 1.9
Camel Back /2% = ' Y Y Y [—1.1,1.1]
5 5
Shubert fa(w,y) == icos((i+ Dz +i)-» icos((i+ 1)y +1i) [—10, 10]?
i=1 i=1
Schaffer fa(z,y) = —0.5 — (sin®(v/x2 + y2) — 0.5)/(1 + 0.001(z” + y*))* [-100, 100]*
. 2 — |y))(3 —
- f5(x,y) = sin(2.27x + O.5w)%§|x|)+ [—2,2]x
rsem
sin(0.5my” + 0.5@%}2_@ [~1.5,1.5]

Table 1. Test functions

The stopping criterion has been established depending on the problem. The
results are presented in Tables 2-6.
Himmelblau: the aim is to locate all the four global optima (fi (z*) = 200) with
an accuracy € = 107% with respect to the optima value. As can be seen in Table
2 almost similar results have been obtained by CDE, MMDE and MCDE. In the
case of multipopulation variants the subpopulation size has to be at least 10.
Siz-hump camel back: the aim is to find the two global optima (f2(z*) = 1.03163)
with accuracy € = 107° and to locate other four local optima. This is a diffi-
cult problem for CDE and MCDE. When a hill-valley approach is used (as is



CDE and MCDE MMDE

m s pm SR (P) (nfe) m s pm (e) SR (P) (nfe) DE eq.
15 1 0 9% 4 6605 10 5 0 2.03100% 4 7553 (1)
20 1 0 100% 4 8033 5 10 O 2 96% 4 8081 (1)
10 2 0.1 100% /4 7486 10 5 0 276 100% 4 6069 (2)
10 2 0.5 100% 4 7653 5 10 0 5.86 3% 4 10647 (2)

Table 2. Results for Himmelblau’s test function

suggested in [15]) CDE finds all optima but MCDE has not enough explorative
power. On the other hand MMDE behaves better especially when the perturba-
tion of type (2) is used.

CDE and MCDE MMDE
m s pm SR (P) (nfe) m s pm (e) SR (P) (nfe) DE eq.
100 1 0 100% 6 62645 10 10 0 5.43 90% 5.86 37538 (1)
1201 0 100% 6 71790 12 10 0 5.80 93% 5.93 47318 (1)
20 5 0.1 70% 5.56 48177 10 10 0 3.48100% 6 14610 (2)
30 4 0.1 83% 6.13 53151 12 10 0 3.40 100% 6 16822 (2)

Table 3. Results for "six hump camel back” test function

Shubert: the aim is to locate all eighteen global maxima (fs(z*) = 186.731)
with accuracy e = 1072, In this case the best results are obtained by MCDE. A
possible explanation is that the aim was to locate only global maxima. However
CDE locates more local optima than MCDE. On the other hand MMDE needs
more function evaluations to locate all global optima and the number of found
local optima is smaller than in the case of CDE.

CDE and MCDE MMDE
m s pm SR (P) (nfe) m s pm (e) SR (P) (nfe) DE eq.
50 1 0 93% 17.9/49.9 60800 15 20 0 5.73 96% 17.9/40.83 136833 (1)
75 1 0 100% 18/74.9 107200 20 20 0 4.90 100% 18/33.73 172967 (1)
25 2 0.1 100% 18/23.7 29283 15 20 0 7.96 96% 17.9/78.2 110076 (2)
25 3 0.1 100% 18/25.4 38325 20 20 0 5.63100% 18/47.838 109703 (2)

Table 4. Results for Shubert’s test function

Schaffer: the aim is to locate the global optimum (fs4(2z*) = 0) with accuracy
€ = 107%. The difference between the value of the global optimum and that of
the local ones is very small. In this case MMDE (based on perturbation of the
first type) outperforms CDE and MCDE. Also MCDE behavior is better than



that of CDE with respect to the number of the number of function evaluations
but as is expected the explorative power is lower (see also Fig. 5).

CDE and MCDE MMDE
m s pm SR (P) (nfe) m s pm (e) SR (P) (nfe) DE eq.
20 1 0 53% 19.96 60570 10 2 0.1 2.82100% 1 21748 (1)
50 1 0 46% 49.93 263835 10 4 0.1 1.66 100% 1 24786 (1)
10 2 0.1 100% 13.36 44006 10 2 0.1 10 13% 1.33 9655 (2)
10 2 0.5 100% 12.9 31566 10 4 0.1 9.13 26% 1.4 19308 (2)

Table 5. Results for Schaffer’s test function

Fig. 5. The population after 100 iterations - Schaffer test function. (a)CDE (m = 100,
s=1, pm =0) (b) MCDE (m = 10, s = 10, p,, = 0.1, 7 = 10)

Ursem: the aim is to approximate the global optimum (f(z*) = 2.5) with accu-
racy € = 10> and to locate other four local optima. With respect to the number
of function evaluations MMDE behaves similar to CDE. When the population
size is at least ten and there are enough subpopulations, MCDE behaves better
than CDE. The population distribution after 100 iterations is illustrated both
for CDE and MCDE in Fig. 6. The population distribution suggests that in the
case of MCDE the population concentrates quicker on the optima than in the
case of CDE.

5 Conclusions and further work

The numerical results suggest that crowding DE and multiresolution multipopu-
lation DE behaves almost similar. However CDE behaves better when the num-
ber of optima to be found is large (e.g. Shubert’s test function) due to the



CDE and MCDE MMDE

m s pm SR (P) (nfe) m s pm (e) SR (P) (nfe) DE eq.
25 1 0 9% 5 5766 5 5 0 4 100% 5 6429 (1)
50 1 0 100% 5.1 13016 10 5 0 4.86 100% 5 16291 (1)
5 5 0.1 43% 4.30 4948 5 5 0 943 26% 5.06 4429 (2)
10 5 0.1 100% 5.08 8650 10 5 0 3.7 100% 5 8268 (2)

Table 6. Results for Ursem’s test function

presence of crowding process. The multipopulation version of CDE is able to
identify and to maintain multiple optima as long as the subpopulation size is at
least ten. It converges quicker than CDE but, since the crowding technique is ap-
plied only at the subpopulations level, it has a lower explorative power. Further
analysis on the hybrid technique is needed in order to establish its properties.

Fig. 6. The population after 100 iterations - Ursem test function. (a)CDE (m = 100,
s=1, pm =0) (b) MCDE (m = 10, s = 10, p,, = 0.1, 7 = 10)
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