

A Multipopulation Differential Evolution Algorithm for Multimodal Optimization

Daniela Zaharie
West University
Timisoara, Romania
dzaharie@info.uvt.ro

Outline

- Multimodal optimization
- EAs for multimodal optimization
- Multipopulation Differential Evolution
- A multiresolution variant
- Numerical results
- Conclusions

Multimodal optimization (1)

- □ Aim: find all optima (global and/or local) of the objective function
- Motivation:
 - ☐ give to the decision maker not a single optimal solution but a set of good solutions
 - ☐ find all solutions with local optimal behavior
- ☐ Similar with: multiobjective optimization
- Applications:
 - Systems design
 - DNA sequence analysis
 - ☐ Detecting peaks in DTA (differential thermal analysis) curves

Multimodal optimization (2)

Global optimization

Aim: find a global optimum

Evolutionary approach: population concentrates on the global optima (single powerful species)

Premature convergence: bad

Multimodal optimization

Aim: find all (global/ local) optima

Evolutionary approach: different species are formed each one identifying an optimum

Premature convergence: not so bad

EAs for multimodal optimization (1)

- Multimodal evolutionary approaches:
 - Sequential niching models
 - ☐ Iterative application of an EA
 - ☐ At each iteration is identified an optimum
 - ☐ The fitness function is derated based on already found optima [Beasley et al., 1993]
 - Parallel subpopulation models
 - □ Divide the population into communicating subpopulations which evolves in parallel
 - ☐ Each subpopulation corresponds to a species whose aim is to populate a niche in the fitness landscape and to identify an optimum
 - ☐ Speciation is usually assured by a clustering process [Bessaou et al., 2000], [Li et al., 2002]

EAs for multimodal optimization (2)

- Difficulties:
 - ☐ Finding an adequate niche radius
 - ☐ Computational cost of the clustering process (usually O(m²))
- ☐ Aim of this work:
 - Analyze the applicability of Differential Evolution to multimodal optimization
 - Develop an algorithm which:
 - ☐ Uses the fast convergence and robustness of DE
 - ☐ Uses few control parameters
 - □ Avoids a global processing of the entire population (clustering step)
 - ☐ Easy to be implemented in parallel

Multipopulation DE (1)

- □ Population structure
 - s subpopulations of fixed size m
- Controlled initialization
 - assure landscape exploration
- □ DE2-type recombination
 - fast convergence
- Random migration
- ☐ Convergence?
 - subpopulations variance becomes small
- Archiving
 - collects the best elements of the subpopulations

Multipopulation DE (2)

Problem:

find the maxima of $f:D \subset \mathbb{R}^n \to \mathbb{R}$, $D=[a,b]^n$

Resolution factor:

$$r = (b-a)/s^{1/n}$$

■ Subpopulation P_i is initialized in

$$D_{i}=[a_{1}^{i},b_{1}^{i}]x ...x [a_{n}^{i},b_{n}^{i}]$$

 $a_{j}^{i}=a+r k_{j}^{i}, b_{j}^{i}=a_{j}^{i}+r$
 $k_{i}^{i}\in\{0,1,...,[s^{1/n}]-1\}$ randomly selected

- Initially the elements of a subpopulation are relatively close to each other
- During the evolution the subpopulations can overlap

Multipopulation DE (3)

Best element of the subpopulation

Parents

Offspring

$$z_{i} = \begin{cases} x^{*} + F \times (x_{j} - x_{k}) & \text{with probability } p \\ x_{i} & \text{with probability } l - p \end{cases}$$

Selection: the best one between the parent and the offspring is selected

- Motivation:
 - ☐ Fast convergence to an optimum (the subpopulations finds an optimum in their neighbourhood)

Multipopulation DE (4)

- Random migration:
 - After a given number of generations the subpopulations exchange information
 - Each element of a subpopulation can be swapped with a migration probability with a randomly selected element from a random subpopulation
- Migration effects:
 - ☐ Ensures an increase of subpopulations diversity
 - Avoid premature convergence
 - □ Can guide different subpopulations toward the same optimum (the subpopulations centroids migrate toward the population centroid)
- Practical remark:
 - ☐ If multiple optima have to be located the migration probability should be small

Multipopulation DE (5)

Dependence of the number of found optima on the migration probability

Test function: multigaussian – 10 optima

Multipopulation DE (6)

- Archiving:
 - ☐ The best element from each subpopulation is stored in an archive
- Redundancy avoiding : only the elements which:
 - are sufficiently dissimilar
 - belong to different peaksthan those already stored are retained
- To decide if two elements belong to different peaks the hill-valley function is used

[Ursem, Multinational Evolutionary Algorithms, 1999]

Multipopulation DE (7)

- ☐ Hill-valley function:
 - □ If there exists $c \in (0,1)$ such that

$$z=cx+(1-c)y$$
 implies $f(z)< f(x)$ and $f(z)< f(y)$

then there exists a valley between x and y

☐ The decision is based on computing z for some values of c

Archive before valley detection

Archive after valley detection

A multiresolution variant (1)

- Motivation:
 - When many optima have to be found, MDE needs many subpopulations
 - ☐ If the optima are unequally spaced some of them could be missed
- Basic idea:
 - Apply repeatedly the MDE for different resolution factors
 - ☐ Hybridization between the sequential and parallel niching methods
- ☐ (Re)initialization:
 - Based on the resolution factor and on the archive content
- □ Communication between different epochs:
 - ☐ Through the archive

A multiresolution variant (2)

- ☐ Idea of controlled (re)initialization
 - \square At each new epoch e, the elements of subpopulation P_i are selected from a subdomain

$$D_i = [a_1^i, b_1^i] \times ... \times [a_n^i, b_n^i]$$

 $a_j^i = a + r_e k_j^i, b_j^i = a_j^i + r_e, r_e = (b-a)/(se)^{1/n}$
 $k_i^i \in \{0, 1, ..., [s^{1/n}] - 1\}$ randomly selected

 \square A random element from D_i is accepted with the probability

$$P_{a}(x) = \frac{1}{1 + \sum_{i=1}^{k} \sigma(x, a_{i})}, \qquad \sigma(x, a) = \begin{cases} 1 - \frac{d(x, a)}{r_{e}/2} & \text{if } d(x, a) < r_{e}/2\\ 0 & \text{otherwise} \end{cases}$$

$$A=\{a_1,...,a_k\}$$
 – the archive

The selection of elements from D_i is based on a non-uniform distribution obtained by modifying the uniform distribution by using a sharing function

r_e

A multiresolution variant (3)

Illustration of controlled (re)initialization $f(x,y) = \sum_{j=1}^{5} j(\cos(j+1)x+j) \sum_{j=1}^{5} j(\cos(j+1)y+j)$ (Shubert function (2D) on [-10,10]² – 18 global optima)

Population elements

Current archive

Restricted area

A multiresolution variant (4)

☐ Illustration of controlled (re)initialization (Shubert function (2D) – 18 global optima)

Numerical results (1)

- Aim of experiments:
 - Analyze the ability of MMDE to locate multiple optima
 - Compare MMDE with other multimodal evolutionary techniques
- Experimental setup:
 - ☐ The population is divided into s subpopulations of fixed size m
 - DE convergence for a subpopulation: Var(X(g))<10⁻⁵
 - Migration: random
 - DE parameters:
 - □ p=1
 - ☐ F adaptive:

$$F(g) = \sqrt{\frac{c(g) - (m-1)/m}{2}}, \quad c(g) = \frac{Var(X(g-1))}{Var(X(g))}$$

Numerical results (2)

- Comparison between MDE and MMDE:
- Test function: multigaussian

Numerical results (3)

☐ Test function: Schaffer 2D

$$f(x,y) = 0.5 + \frac{\sin^2(\sqrt{x^2 + y^2}) - 0.5}{(1 + 0.001(x^2 + y^2))}, \quad x,y \in [-10,10]$$

m=10, s=20, g=50, e=10, $p_m=0$

m=10, s=20, g=10x10, e=10, $p_m=0.5$

Numerical results (4)

☐ Test function: multi-peaks

$$f(x, y) = x \sin(4\pi x) - y \sin(4\pi y + \pi), \ x, y \in [-2, 2]$$

m=5, s=50, g=50, e=20, p_m =0 (91 elements in the archive)

m=5, s=50, g=10x10, e=20, p_m =0.5 (4 elements in the archive)

Numerical results (5)

Comparative results

Test function: Himmelblau

MMDE (m=5,s=10,
$$e_{max}$$
=2, p_{m} =0)

Sequential niching [Beasley, 1993] (m=26)

Fct.eval.	Succes rate	RMS error	Fct.eval.	Succes rate	RMS error
2665	96%	0.1	5500	76%	0.2

Test function: multi-peaks [de Castro, 2002]

MMDE (
$$m=5, s=50, e_{max}=20, p_{m}=0$$
)

Opt Al-net (20 cells, 10 clones, 451 gen.)

Fct. eval.	No. of optima	Fct. eval.	No. of optima
76630	88.16	90200	61

Numerical results (6)

Comparative results

Test function: Shubert 2D

MMDE (m=10,s=50, e_{max} =10, p_{m} =0)

SCGA [Li et al., 2002] (m=300)

Fct. eval.	No. of optima	Fct. eval.	No. of optima
39463	17.26	35747	18

Test function: Schaffer 2D

MMDE ($m=40,s=10,e_{max}=1,p_{m}=0.5$)

Island model+speciation [Bessaou et al., 2000] (m=10, s=50)

Fct. eval.	Succes rate	Fct. eval.	Success rate
26253	90%	18000	100%

Conclusions

- Characteristics of MMDE:
 - Exploration ensured by a multi-resolution approach and a controlled (re)initialization of subpopulations
 - Exploitation ensured by a adaptive DE2 variant
 - Preservation of good solutions by a controlled archiving
 - Small subpopulations
 - Migration introduce flexibility:
 - ☐ high migration probability: locate one global optima
 - ☐ small migration probability: locate all global optima
 - ☐ no migration: identify all global/local optima
 - No niche radius
 - No global clustering
 - Easy to parallelize
 - Sensitivity to the number of subpopulations and to the number of epochs