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Multimodal optimization (1)

Aim:  find all optima (global and/or local) of the 
objective function
Motivation: 

give to the decision maker not a single optimal solution but a 
set of good solutions
find all solutions with local optimal behavior

Similar with: multiobjective optimization
Applications:

Systems design
DNA sequence analysis
Detecting peaks in DTA (differential thermal analysis) curves
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Multimodal optimization (2)
Multimodal optimizationGlobal optimization

Aim: find a global optimum

Evolutionary approach: population
concentrates on the global optima
(single powerful species)

Premature convergence: bad
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Aim: find all (global/ local) optima

Evolutionary approach: different 
species are formed each one 
identifying an optimum

Premature convergence: not so bad
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EAs for multimodal optimization (1)

Multimodal evolutionary approaches:
Sequential niching models

Iterative application of an EA
At each iteration is identified an optimum
The fitness function is derated based on already found optima

[Beasley et al., 1993]

Parallel subpopulation models
Divide the population into communicating subpopulations which 
evolves in parallel
Each subpopulation corresponds to a species whose aim is to 
populate a niche in the fitness landscape and to identify an 
optimum
Speciation is usually assured by a clustering process

[Bessaou et al., 2000], [Li et al., 2002]
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EAs for multimodal optimization (2)

Difficulties:
Finding an adequate niche radius
Computational cost of the clustering process (usually O(m2))

Aim of this work:
Analyze the applicability of Differential Evolution to multimodal
optimization
Develop an algorithm which:

Uses the fast convergence and robustness of DE
Uses few control parameters
Avoids a global processing of the entire population (clustering 
step)
Easy to be implemented in parallel
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Multipopulation DE (1)

Population structure
- s subpopulations of fixed size m

Controlled initialization 
- assure landscape  exploration

DE2-type recombination
- fast convergence

Random migration
Convergence ?
- subpopulations variance becomes small

Archiving
- collects the best elements of the 

subpopulations

Subopulations
initialization (P1,…,Ps)

Migration

Convergence ?

Apply DE to (P1,…, Ps) 

Archiving the best 
elements

MENDEL’04



8

Multipopulation DE (2)

Problem:
find the maxima of f:DÃRn→R,  D=[a,b]n

Resolution factor:
r=(b-a)/s1/n

Subpopulation Pi is initialized in
Di=[a1

i,b1
i]x …x [an

i,bn
i]

aj
i=a+r kj

i , bj
i=aj

i+r
kj

iŒ{0,1,…, [s1/n]-1}  randomly selected

Initially the elements of a subpopulation are 
relatively close to each other

During the evolution the subpopulations can 
overlap

Subopulations
initialization (P1,…,Ps)

Migration

Convergence ?

Apply DE to (P1,…, Ps) 

Archiving the best 
elements
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Multipopulation DE (3)

Motivation:
Fast convergence to an optimum (the subpopulations 
finds an optimum in their neighbourhood)

Subopulations
initialization (P1,…,Ps)

Migration

Convergence ?

Apply DE to (P1,…, Ps)

Archiving the best 
elements

Parents

Offspring

x1 … xi … xj … xk … x*

1 … i … j … k … l

j and k are randomly selected

x*+F×(xj-xk) with probability p
zi=

xi with probability 1-p

… xm

m

Best element of the subpopulation

Selection: the best one between the parent and the offspring  
is selected

z z z z z … z
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Multipopulation DE (4)

Random migration:
After a given number of generations the 
subpopulations exchange information
Each element of a subpopulation can be swapped  
with a migration probability with a randomly 
selected element from a random subpopulation

Migration effects:
Ensures an increase of subpopulations diversity
Avoid premature convergence
Can guide different subpopulations toward the 
same optimum (the subpopulations centroids
migrate toward the population centroid)

Practical remark:
If  multiple optima have to be located the migration 
probability should be small

Subopulations
initialization (P1,…,Ps)

Migration

Convergence ?

Apply DE to (P1,…, Ps)

Archiving the best 
elements
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Multipopulation DE (5)

Dependence of the number of found optima on the migration probability
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Multipopulation DE (6)

Archiving:
The best element from each subpopulation is 
stored in an archive

Redundancy avoiding : only the elements 
which:

are sufficiently dissimilar
belong to different peaks

than those already stored are retained

To decide if two elements belong to different 
peaks the hill-valley function is used

[Ursem, Multinational Evolutionary Algorithms, 1999]

Subopulations
initialization (P1,…,Ps)

Migration

Convergence ?

Apply DE to (P1,…, Ps)

Archiving the best 
elements
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Multipopulation DE (7)

Hill-valley function:
If there exists cŒ(0,1) such that 

z=cx+(1-c)y implies f(z)<f(x) and f(z)<f(y)
then there exists a valley between x and y 

The decision is based on computing z for some values of c
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same peak

different peaks

z

MENDEL’04



14

A multiresolution variant (1)

Motivation:
When many optima have to be found, MDE 
needs many subpopulations
If the optima are unequally spaced some of 
them could be missed

Basic idea:
Apply repeatedly the MDE for different 
resolution factors
Hybridization between the sequential and 
parallel niching methods

(Re)initialization:
Based on the resolution factor and on the 
archive content

Communication between different epochs:
Through the archive

Controlled (re)initialization

Convergence ?

DE+migration

Archiving

Archive initialization
e:=0

re:=(b-a)/(se)1/n

e:=e+1

e<emax

MDE
epoch
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A multiresolution variant (2)

Idea of controlled (re)initialization
At each new epoch e, the elements of subpopulation Pi are selected from 
a subdomain

Di=[a1
i,b1

i]x …x [an
i,bn

i]
aj

i=a+re kj
i , bj

i=aj
i+re, re=(b-a)/(se)1/n

kj
iŒ{0,1,…, [s1/n]-1}  randomly selected

A random element from Di is accepted with the probability
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The selection of elements from Di is based on a non-uniform 
distribution obtained by modifying the uniform distribution by using a 
sharing function

A={a1,…,ak} – the archive
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A multiresolution variant (3)
Illustration of controlled  (re)initialization

(Shubert function (2D) on [-10,10]2 – 18 global optima) 

Epoch 3

Epoch 4 Epoch 5

Population 
elements

Current archive

Restricted area 
around found 
optima

MDE 
parameters:
m=10
s=20
pm=0.1
100 generations
tm=10
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A multiresolution variant (4)

Epoch 7

Illustration of controlled  (re)initialization (Shubert function (2D) – 18 global optima) 

Population 
elements

Current archive

Restricted area 
around found 
optima

MDE 
parameters:
m=10
s=20
pm=0.1
100 generations
tm=10

Epoch 6

Epoch 8 Epoch 9
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Numerical results (1)

Aim of experiments:
Analyze the ability of MMDE to locate multiple optima
Compare MMDE with other multimodal evolutionary techniques

Experimental setup:
The population is divided into s subpopulations of fixed size m
DE convergence for a subpopulation: Var(X(g))<10-5

Migration: random
DE parameters:  

p=1
F adaptive: 

))((
))1(()(       ,

2
/)1()()(

gXVar
gXVargcmmgcgF −=−−=

MENDEL’04



19

Numerical results (2)

Comparison between MDE and MMDE:
Test function: multigaussian
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Numerical results (3)

Test function:  Schaffer 2D
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Numerical results (4)

Test function: multi-peaks
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(4 elements in the archive)
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(91 elements in the archive)
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Numerical results (5)

Comparative results

Test function: Himmelblau

Sequential niching [Beasley, 1993] (m=26)MMDE (m=5,s=10,emax=2,pm=0)

0.276%55000.196%2665
RMS errorSucces rateFct.eval.RMS errorSucces rateFct.eval.

Test function: multi-peaks  [de Castro, 2002]

MMDE (m=5,s=50,emax=20,pm=0) Opt AI-net (20 cells, 10 clones, 451 gen.)

619020088.1676630
No. of optimaFct. eval.No. of optimaFct. eval.
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Numerical results (6)

Comparative results

Test function: Shubert 2D

SCGA  [Li et al., 2002] (m=300)MMDE (m=10,s=50,emax=10,pm=0)

183574717.2639463

No. of optimaFct. eval.No. of optimaFct. eval.

Test function: Schaffer 2D

Island model+speciation [Bessaou et al., 2000]
(m=10, s=50)MMDE (m=40,s=10,emax=1,pm=0.5)

100%1800090%26253
Success rateFct. eval.Succes rateFct. eval.
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Conclusions

Characteristics of MMDE:
Exploration ensured by a multi-resolution approach and a controlled 
(re)initialization of subpopulations
Exploitation ensured by a adaptive DE2 variant
Preservation of good solutions by a controlled archiving
Small subpopulations
Migration introduce flexibility:

high migration probability:  locate one global optima
small migration probability:  locate all global optima
no migration: identify all global/local optima

No niche radius 
No global clustering 
Easy to parallelize
Sensitivity to the number of subpopulations and to the number of epochs
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