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Abstract - The aim of this paper is to propose a filter, based on 
a multi-objective evolutionary algorithm, for attributes’ ranking 
in the context of a data mining task. The behavior of this filter is 
analyzed for the problem of ranking risk factors in preterm birth. 
The results obtained by applying the proposed evolutionary 
approach are compared with rankings obtained by applying some 
classical attributes selection methods and a logistic regression 
procedure. The influence of the ranking on a supervised 
classification (based on a radial basis function neural network) is 
also analyzed and the results suggest that the evolutionary 
approach provides a good quality ranking. 

I. INTRODUCTION 

Identifying and ranking risk factors are important tasks in 
medical data analysis. They are usually approached by 
applying statistical tools to databases containing information 
about an investigated pathology.  In most situations the data, 
containing information about the presence/absence of some 
symptoms (factors), belong to two classes (one corresponding 
to the case when a given illness was present and another one 
when the illness was absent) and the task is be to identify the 
factors with a significant influence on the presence/absence of 
that illness. 

Such a task is equivalent to the problem of selecting, starting 
from a training data set, the relevant attributes for a supervised 
classification process. The classification performance 
significantly depends on the attributes’ relevance, while their 
number influences the computational costs. Therefore, 
attributes’ selection is a key step in any data mining process. 

Besides the statistical methods, also computational 
intelligence techniques, particularly neural networks and 
evolutionary algorithms, have been successfully applied in 
attribute selection tasks [1-4]. 

The aim of this paper is to present an evolutionary approach 
in attribute ranking based on interpreting the problem as a 
multiobjective optimization one.  This evolutionary approach 
of ranking the attributes is applied for a case study in obstetrics 
whose aim is to identify maternal risk factors for spontaneous 
preterm birth.  The paper is organized as follows. Section two 
overviews some recent works related with the use of 
computational intelligence techniques in the design of filters 

for attributes’ selection. The formulation of the problem of the 
attributes’ ranking as a multiobjective optimization problem is 
given in the third section, where the evolutionary approach is 
also presented. The results obtained by applying the proposed 
technique in the case of ranking the risk factors in preterm 
birth are presented in discussed in section four. The last section 
concludes the work. 

II. RISK FACTORS RANKING AND ATTRIBUTE SELECTION 

In a medical decision system, the problem of predicting the 
presence of a suspected pathology (based on a set of existing 
associated factors) can be formulated as a classification task.  
Thus, identifying the risk factors means in fact selecting the 
most relevant attributes with respect to the classification task. 

In choosing the appropriate method for selecting the 
attributes two important elements should be considered: (i) the 
measure of their relevance to the classification task; (ii) the 
way the attributes’ space is explored. 

For evaluating the relevance of a subset of attributes to the 
classification process, there are two main approaches [5]: the 
filter method and the wrapper method.   

The filter method is based on estimating some relevance 
measures using only the initial data and their labels (in the case 
of supervised classification).  The natural approach is to use 
just enough attributes to divide up the instance space in a way 
that separates all the training instances [5].  The relevant 
attributes should be chosen by ranking all of them with respect 
to the classification task. The main difficulty here is identifying 
the appropriate relevance measures. 

The wrapper approach is characterized by the fact that 
selection is made based on the behavior of the classifier on the 
analyzed subset of attributes. This means that, in order to 
evaluate an attribute subset, the classifier is trained for this 
subset and its performance on a validation set is used to assess 
the relevance of the subset.  This way, the selection is tuned to 
the classifier learning scheme, thus the wrapper approach 
usually leads to better results than the filter approach, but the 
computational cost is significantly higher. 

The second important element in the process of attribute 
selection is the exploration of the space of all possible 



attributes subsets.  As the exhaustive exploration of this space 
is usually not applicable, the classical approach is to apply a 
greedy strategy either in a forward manner (starting from the 
empty set of attributes and adding the most promising one at 
each step) or in a backward manner (starting from the entire set 
of attributes and removing the least promising one at each 
step).  However, such a greedy strategy usually leads to a local 
optimum.  In order to eliminate this drawback, there were 
proposed searching strategies based on evolutionary algorithms 
[1-4]. 

Reference [2] presents the use of a genetic algorithm to 
simultaneously find a proper subset of examples and attributes 
in a wrapper approach based on the nearest neighbor 
classification. The selection in the genetic algorithms favors 
configurations with a small classification error and a small 
number of examples and attributes. These three optimization 
criteria are linearly combined in a single criterion by using 
some user specified parameters. 

Yang and Honavar proposed another wrapper-based 
approach, which uses a genetic algorithm in order to explore 
the attribute space [3]. The selector is based on a neural 
network and uses as relevance measures the generalization 
accuracy of the neural network classifier (to be maximized) 
and the classification cost (to be minimized). These criteria are 
combined by dividing the first one to the second one. 

The approaches in [1] and [4] are also based on combining a 
wrapper method with an evolutionary algorithm, so the 
evaluation of each attribute subset entails training and 
validating a classifier (which already are quite computationally 
expensive) and using evolutionary algorithms to explore the 
space (which amplify this computational cost even more, as all 
elements of the population have to be evaluated at each 
generation). 

Taking all these into account, we decided to combine a filter 
approach for measuring attribute relevance with an 
evolutionary algorithm for exploring the attribute subsets’ 
space. 

III. A MULTIOBJECTIVE EVOLUTIONARY OPTIMIZATION 
APPROACH FOR ATTRIBUTE SELECTION 

In the absence of a universally accepted relevance measure, 
different criteria should be simultaneously used in order to deal 
with the attribute selection/ranking problem. Thus this problem 
can be naturally cast as a multiobjective optimization, i.e. find 
the subset(s) which simultaneously optimize different criteria. 

Both attribute selection and attribute ranking are related with 
the problem of assigning weights to attributes. After each 
attribute received a weight proportional with its relevance to 
the classification task, selection consists just in using a 
threshold to separate the relevant attributes from irrelevant 
ones while ranking consists in decreasingly sorting the list of 
attributes based on their weights.  When the weights are binary 
values, the attribute weighting is reduced to the attribute 
selection. In the following we describe a method to find, in an 
evolutionary manner, the appropriate weights for the attributes. 

A. Measures of Attributes Relevance 

The measures to be used should be selected depending on 
the method for attribute selection. When wrapper methods are 
used, the measures are particularly represented by the 
classification accuracy on the training set or the generalization 
measured on a validation set.  

In the case of filter methods, the measures are more related 
to the intrinsic properties of data, e.g. compactness of classes, 
separation between classes, correlation between attributes and 
classes labels. Since these measures are used in our approach, 
they will be described in the following. 

Let us consider a set of N labeled data: },1;{ Nixr
i = , where 

},...,1{ kr ∈ is the class label and each is a vector with n 
numerical components, each component being related to an 
attribute value.  We also consider that each class  contains 
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interclass separation which is defined as the average distance 
between the centers of all classes and the center of the entire 
data set: 
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The smaller the intraclass distance and the larger the 
interclass distance are, the easier is to classify the data, 
meaning that the involved attributes are relevant to the 
classification.  

In order to evaluate the attribute subsets, each subset should 
be described by a vector of weights: , where ),...,( 1 nww

]1,0[∈iw  could be interpreted as the relevance of attribute i. If 
the weights have binary values, then a value of one for the 
weight means that the attribute i is selected; similarly, a zero 
value means the attribute i is ignored.  In order to include the 
attributes weights into the intra- and inter-classes distances, the 
Euclidean distance involved in (1) and (2) should be replaced 
with: 
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This is the only modification needed in order to work with 
weighted attributes and it is appropriate both in the case of 
binary and in the case of continuous weights. 

As is illustrated in [4] the pair of measures does not 
always work well as a class separability measure, thus a 
complementary measure was also proposed: the attribute class 
correlation measure [4], which is based on the idea that the 
correlation between the changes in the attributes values and the 
differences of class labels should be taken into account when 
ranking the importance of attributes.  In the case of weighted 
attributes the correlation measure presented in [4] can be 
extended as follows: 
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where denotes the component i of data j and )(ix j ),( yxϕ  is 1 
if x and y belong to different classes and it is -0.05 if they 
belong to the same class. 

The weights vector which minimizes the intra-class distance 
(1) and maximizes the inter-classes distance (2), and the 
attribute class correlation measure (4) will give us the 
relevance of each attribute with respect to the classification 
task.  Unfortunately, an ideal weight vector optimizing all three 
measures usually does not exist. In such a situation, trade-off 
solutions should be used instead. 

In order to solve such a multi-objective optimization 
problem, there are at least two approaches: (i) combining all 
criteria in a single one; or (ii) estimating a set of trade-off 
solutions (the so-called Pareto optimal solutions). 

Most approaches in attribute selection combine the measures 
in one optimization criterion arriving to a single-objective 
optimization problem.  When linear combinations of criteria 
are used (as in [2] and [4]) another problem arises: that of 
choosing appropriate values for the coefficients involved in the 
linear combination. Different sets of coefficient values lead to 
different solutions. The influence of these coefficients on the 
solution is clearly illustrated in [4] suggesting that the choice 
of these coefficients is a critical element. 

Instead of combining all criteria in one objective function, 
an alternative would be to solve the multi-objective 
optimization problem directly by using the classical Pareto 
dominance concept. A solution vector w1 dominates another 
vector w2 if it is better than w2 with respect to all criteria. On 
the other hand, a vector is considered to be non-dominated if 
there is no other vector which dominates it. By applying a 
Pareto-type multi-objective optimization algorithm, the result 
is a set of reciprocally non-dominated vectors.  Such an 
approach is proposed in [1], where a multi-objective genetic 
algorithm is used in combination with a decision-tree based 
wrapper method. The criteria to be minimized were the 
classification error and the size of the decision tree. 

The advantage of obtaining an entire set of solutions is that 
we can combine the rankings provided by all solutions in order 
to obtain a more reliable ranking.  

B.  The Evolutionary Approach 

Evolutionary algorithms are stochastic searching methods 
which iteratively transform a population of candidate solutions 
by applying nature inspired operators: recombination, mutation 
and selection. They proved to be effective in approximating the 
set of Pareto optimal solutions corresponding to multi-
objective optimization problems and are currently applied in 
solving different problems from science and engineering [6]. 

In the approach we propose, the population consists of a set 
of weight vectors randomly initialized in . At each 
generation, a new population is generated by applying 
recombination and mutation. The population of survivors is 
constructed through a selection operator based on the 
dominance relation between the vectors containing values of 
the three evaluation measures (D

n]1,0[

1,D2,C).  From the large 
plethora of multi-objective evolutionary algorithms, the variant 
we chose was NSGA-II (Nondominated Sorting Genetic 
Algorithm) [7]. It is based on specific polynomial 
recombination and mutation operators, and a selection operator 
which uses the concept of non-dominance ranking and that of 
crowding. By applying this algorithm to a population of m 
weight vectors one usually obtains, after some hundreds of 
generations, a set of m reciprocally nondominated solutions. 
Each one contains the weights of n attributes and can be 
considered a solution of the optimization problem. Based on 
these m weight vectors one can obtain m rankings of the 
attributes, which are not necessarily distinct. The final ranking 
is calculated as the average of all these rankings.  

The approach we propose is different from that presented in 
[1] with respect to three elements: the attribute selection 
method which is of filter type instead of wrapper type; the 
criteria to be optimized, which are three instead of two; the 
evolutionary algorithm. 

IV. A CASE STUDY: RANKING THE RISK FACTORS OF 
PRETERM BIRTH 

Full-term births are between 37 and 42 gestational weeks-
long, while those happening before are considered to be pre-
term. Although, at present, infants born after 20 weeks of 
gestation can survive, they frequently suffer from lifelong and 
severely debilitating handicaps. Moreover, the care of these 
preterm neonates entails higher costs. In conclusion, 
preventing preterm birth and prolonging gestation (when 
clinically appropriate) is not only an important medical issue, 
but also a public health and a healthcare managing problem. 

 
Identifying the risk factors associated with spontaneous 

preterm labour has been concentrating substantial research 
efforts, as this would allow developing models for risk 
prediction [8-11]. Being able to select individuals at risk would 
give the doctors time for close monitoring and intervention. 



 A. The Set of Data 

The data for this study were provided by the University 
Hospital of Obstetrics-Gynaecology „Dr. Dumitru Popescu” 
from Timisoara which also contributed the medical analysis of 
the attributes’ relevance. The data consisted of perinatal 
information collected from the paper-based medical records of 
patients who received perinatal care in the Hospital during Jan-
Dec 2006. 

The analyzed set of data consisted of 177 records containing 
information concerning mothers and their children. This set of 
data was obtained by a preliminary preprocessing consisting in 
eliminating the records with missing values and the attributes 
which were obviously irrelevant from the point of view of 
predicting preterm birth risk (e.g. personal ID) or those which 
were highly correlated (e.g. from weight, height and body mass 
index only the last one was kept).  The number of attributes 
retained after the preliminary preprocessing is 22 (including 
the attribute containing the class label:  full-term birth and 
preterm birth).  The list of all attributes is presented in Table 1. 

B. Experimental Design and Comparative Ranking Results 

In order to apply the ranking approach presented in Section 
3, the data were numerically coded and normalized such that 
all values were between 0 and 1.  The class labels (full-term 
and preterm birth) were assigned based on the gestational age 
(births before 37 weeks were considered to be preterm). Thus 
the gestational age was highly and directly correlated with the 
class label and was expected to have a high relevance. 

TABLE 1.  
 LIST OF ALL ATTRIBUTES 

Code Attribute Code Attribute 

A1 Maternal age A12 Weight gain during 
pregnancy 

A2 Body Mass Index A13 Fundus uterus – 
height 

A3 Smoking A14 Gestational age 

A4 Parity A15 Type of birth – 
vaginal/CSection 

A5 No. Pregnancies A16 Child sex 
A6 Hemoglobin level A17 Child head perimeter 

A7 Low/high red cell 
count A18 Child weight 

A8 Glucose level A19 Child length 
A9 Systolic BP A20 Apgar score 
A10 Diastolic BP A21 Live/still birth 

A11 Abdominal 
perimeter A22 Full-term / Preterm 

(class label) 
 

In order to analyze the behavior of the evolutionary ranking 
of attributes, we used two sets of data: (i) the first set contained 
all attributes, including the gestational age at birth moment;   
(ii) the second set contained only attributes which were 
recorded before the birth moment (which could play a role as 
predicting factors of preterm birth).   

The first data set was used in order to validate the ranking 
method, while the second one was used to identify the relevant 
attributes which could ensure a low classification error. 

The comparative analysis was based on the following 
methods: 

 
M1: a filter type ranking of attributes based on the 
informational gain (IG) [5]; 
M2: a filter type ranking of attributes based on the symmetrical 
uncertainty (SU) [5]; 
M3: a ranking based on the coefficients obtained by logistic 
regression (LR); in this case, the higher was the absolute value 
of a regression coefficient, the higher was considered the 
corresponding attribute’s relevance; 
M4: a ranking method based on the evolutionary multi-
objective approach (EMOA) described in Section III B. 
 

For the first three methods, the corresponding functions 
from the public domain data mining tool Weka [12] were used 
(with their implicit parameters). 

For the evolutionary variant, the tests were conducted based 
on a Java program implemented starting from the C-code of the 
original NSGA-II [13].  The parameters of the evolutionary 
algorithm were set as follows: 80 elements in population; 750 
generations; a recombination probability of 0.9; and mutation 
probability equal to 1/n (n being the number of attributes).  A 
run of this algorithm gave us a set of 80 weights vectors, all of 
them being reciprocally non-dominated with respect to the 
three measures described in Section III A. That meant that 
none of the vectors was better than any other one with respect 
to all criteria. Thus the final ranking had to take into account 
all the results. In order to combine all of them, we first ranked 
the attributes based on each solution, and using these rankings 
we computed the averaged rank. The final ranking was based 
on these averages. 

The results obtained for the first set of data (with 21 
attributes) are presented in Table 2, which contains the 
attributes listed in decreasing order of relevance estimated 
from the set of data. For the evolutionary method, besides the 
sorted list of attributes, the averaged values of ranks and their 
corresponding standard deviations are also presented. 

All rankings listed in Table 2 have in the first position the 
attribute corresponding to the gestational age, which is in 
accordance with the way the classes were constructed (based 
on the gestational age). Moreover, in the first positions are 
placed mostly the attributes related to the child (A17, A18, 
A19, A21), which seems to be a natural ranking. This test on 
the first set of data gave a first validation for the ranking 
methods, including the evolutionary one. 

The results obtained for the second set of data (containing 
only 14 attributes, those which were recorded before the birth) 
are presented in Table 3. Again, all four methods placed the 
same attribute in the first position (A13 – fundus uterus 
height). Moreover, the first two filters generated identical 
rankings, which can be explained by their similar approaches. 
The variability of the ranks assigned by the methods based on 



logistic regression and on the evolutionary approach can be 
explained by the low predictive power of the attributes with 
respect to the analyzed set of data (excepting the first 
attributes). 

TABLE 2.   
ATTRIBUTE RANKING BY DIFFERENT METHODS (21 ATTRIBUTES) 

M4 (EMOA) 
Rank M1 

(IG) 
M2 
(SU) 

M3 
(LR) Attribute Average rank

(stdev) 
1 A14 A14 A14 A14 2.9(1.9) 
2 A18 A18 A18 A21 3.7(3.5) 
3 A19 A19 A19 A17 3.8(2.5) 
4 A17 A17 A17 A18 5.7 (3.5) 
5 A13 A21 A21 A19 5.9 (3.5) 
6 A21 A13 A13 A20 8.1 (4.2) 
7 A15 A15 A20 A13 8.1 (4.7) 
8 A16 A3 A11 A11 10 (4.4) 
9 A3 A16 A12 A4 10.2 (4.3) 
10 A7 A7 A15 A12 11.6 (5.3) 
11 A6 A6 A16 A1 12.2 (3.5) 
12 A2 A2 A3 A5 12.4 (4.9) 
13 A4 A4 A1 A2 13.3 (3.7) 
14 A5 A5 A2 A9 14.41 (3.6) 
15 A12 A12 A4 A15 14.43 (4.9) 
16 A20 A20 A10 A10 14.44 (4.3) 
17 A1 A1 A9 A3 15.21 (5.7) 
18 A9 A9 A6 A8 15.27 (4.1) 
19 A8 A8 A7 A7 15.4 (5.7) 
20 A11 A11 A8 A6 15.7 (3.9) 
21 A10 A10 A5 A16 17.6 (3.9) 

 

C. Using the Attributes Ranking in a Classification Process  

Obtaining a ranking can be helpful in selecting those 
attributes which lead to a low error classification ratio and 
allow developing an effective predictive model. Without a 
prior ranking, almost  subsets should be tested in the case of 

attributes. Based on a ranking, the number of subsets to be 
tested depends linearly on the number of attributes. A common 
strategy is the backward selection of attributes which consists 
in starting with the entire set of attributes and removing them 
successively in a decreasing order of their rank (i.e. the 
increasing order of their relevance). 

n2
n

We applied this strategy to validate the ranking obtained by 
the evolutionary approach. In order to classify the data, we 
used a radial basis function neural network classifier 
implemented in Weka.  

This implementation uses a k-means clustering algorithm to 
estimate the centers corresponding to the hidden neurons and a 
simple training algorithm to estimate the weights 
corresponding to the output neurons. The implicit value of two 
hidden neurons was used since our aim was not tuning the 
neural network, but comparing the influence of the ranking on 

the classifier performance. The classification ratio was 
computed by applying a 10-fold cross validation technique. 

 
TABLE 3.  

 ATTRIBUTE RANKING BY DIFFERENT METHODS (14 ATTRIBUTES) 

M4 (EMOA) 
Rank M1 

(IG) 
M2 
(SU) 

M3 
(LR) Attribute Average rank 

(stdev) 
1 A13 A13 A13 A13 4.1 (2.7) 
2 A16 A16 A12 A12 5.8 (2.9) 
3 A3 A3 A10 A9 6.4 (3.6) 
4 A6 A6 A4 A11 6.4 (4.0) 
5 A7 A7 A2 A4 6.6 (4.4) 
6 A5 A5 A6 A10 6.9 (3.9) 
7 A4 A4 A7 A5 7.5 (4.1) 
8 A2 A2 A9 A2 7.97 (4) 
9 A11 A11 A16 A7 7.98 (3.1) 
10 A1 A1 A8 A6 8.1 (4) 
11 A12 A12 A3 A3 8.4 (3.5) 
12 A8 A8 A11 A1 8.6 (4.1) 
13 A10 A10 A1 A8 9.5 (3.8) 
14 A9 A9 A5 A16 10.2 (2.7) 

 

In Table 4, the correct classification ratios for the subsets 
generated by using the rankings obtained with the four 
analyzed methods are presented.  The first column contains the 
ranks from Table 3. The selected attributes depend on the 
ranking, i.e. if the first four attributes were selected, that would 
mean: A13, A16, A3, A6 in the case of methods M1 and M2; 
A13, A12, A10, A4 in the case of the method based on logistic 
regression; and A13, A12, A9, A11 in the case of the 
evolutionary approach. 

TABLE 4.   
CLASSIFICATION RESULTS FOR SUBSETS  OF  ATTRIBUTES SELECTED BASED ON 

DIFFERENT RANKINGS 

Correct classification ratio (%) Ranks of 
selected 

attributes 
M1(IG), 
M2(SU) 

M3 
(LR) 

M4 
(EMOA) 

1-14 77.96 77.96 77.96 
1-13 78.53 78.53 79.09 
1-12 76.27 76.83 77.40 
1-11 76.27 77.4 78.53 
1-10 78.53 79.09 80.79 
1-9 78.53 78.53 80.79 
1-8 79.09 80.79 80.22 
1-7 79.66 80.22 80.79 
1-6 77.96 79.66 81.92 
1-5 76.83 81.35 81.92 
1-4 78.53 82.48 83.05 
1-3 76.83 81.35 82.48 
1-2 80.79 81.92 81.92 
1 79.09 79.09 79.09 

    
 The best classification performance was obtained by retaining 
the first four attributes in the order given by the evolutionary 
approach. These attributes were: A13 (fundus uterus – height), 
A12 (weight gain during pregnancy), A9 (systolic BP), A11 



(abdominal perimeter).  The results are plausible for the set of 
data we used since they contain values measured close to the 
birth moment. 

The slightly higher values of the correct classification ratio 
when the attributes were selected based on the ranking 
obtained by using the proposed approach suggest that this 
could be a valuable candidate in identifying the relevant 
attributes. 

V. CONCLUSIONS AND FURTHER WORK 

Predicting risk factors in the context of a medical decision 
process is similar with identifying relevant attributes with 
respect to a supervised classification task. Both problems are 
equivalent to the problem of estimating the attributes weights 
which optimize some criteria computed based on a training 
data set. Thus we arrived to a multi-objective optimization 
problem which we tried to solve by applying a state of the art 
evolutionary algorithm, NSGA-II [7].   

The results we obtained for a set of obstetrical data illustrate 
the fact that the technique we propose is competitive (from the 
point of view of the results it generates) with respect to some 
classical techniques like filters based on the informational gain 
and symmetrical uncertainty or the logistic regression.  

However, some issues concerning the proposed approach 
should be further addressed: (i) improving the scalability in 
order to apply the technique for large sets of data; (ii) 
extending the set of criteria in order to obtain more reliable 
ranking results; (iii) test the behavior of the approach for 
extended lists of potential risk factors, including medication of 
mother during the pregnancy or just before it. 
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