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Abstract—This paper investigates the ability of an evolutio-
nary pruning mechanism to improve the predictive accuracy
of a classifier based on non-nested generalized exemplars. Two
pruning algorithms are proposed: one which selects the most
representative generalized exemplars and the other one which
simultaneously selects both relevant exemplars and relevant
attributes. Experimental studies conducted for a set of twenty-
one datasets illustrated that both algorithms induce a significant
improvement on the classification ability of the selected set of
non-nested generalized exemplars.

I. INTRODUCTION

Inducing small and accurate classification models from data
is an important issue in machine learning. Finding the right
balance between the predictive abilities of the model and its
size is a difficult problem. However, sometimes reducing the
model size implicitely leads to a more effective classifier.
The model size can be controlled either in a pre-processing
step (e.g. instance selection, attribute selection) or in a post-
processing step (e.g. decision trees pruning, rules sets prun-
ing).

In this paper we address the problem of pruning the set of
generalized exemplars induced using a hybrid instance based
learner, i.e. NNGE (Non-Nested Generalized Exemplars [7]).
The pruning process is based on an evolutionary approach
inspired by a technique recently proposed in [5] and which,
despite its simplicity, proved to be very effective in improv-
ing the classification ability of a simple heuristic extractor
of generalized exemplars from the training set. The natural
question which arises is if this evolutionary selection can be
used to improve the effectiveness of other classifiers based
on generalized exemplars. Therefore, in this paper we inves-
tigate the possibility of improving the behavior of NNGE by
evolutionary selection of generalized exemplars and attributes.

The rest of the paper is organized as follows. Section 2
presents the particularities of the classification based on gener-
alized exemplars with an emphasis on NNGE and describes the
changes we propose on NNGE splitting mechanism. In Section
3 is presented the problem of pruning the classification models
and the evolutionary selection proposed in [5]. The proposed
algorithms are presented in Section 4 while the results of an
experimental study on 21 datasets are presented and discussed
in Section 5. Section 6 concludes the paper.

II. CLASSIFICATION BASED ON GENERALIZED

EXEMPLARS

The classifiers based on generalized exemplars are hybrid
instance based learners which combine the idea of nearest
neighbours classifiers and that of rule based classifiers. The
element borrowed from the nearest neighbours methods is to
use the distance to prototypes when deciding to which class
a given instance belongs. Unlike the case of pure instance
based learners where the prototypes coincide with the training
instances, in the case of classifiers based on generalized
exemplars the prototypes are sets of instances which can
be interpreted as rules. On the other hand the matching
between an instance and a generalized exemplar should not
be necessarily exact but it could be partial, being based on the
computation of a specific distance.

One of the first methods implementing the idea of the
hybrid instance based learning is the Nested Generalized
Exemplar (NGE) theory [9] which uses both simple instances
and generalized exemplars represented as axes-parallel hyper-
rectangles to model the concepts. In the NGE learning the
examples (training instances) are incrementally generalized
leading finally to a set of generalized exemplars and a possible
set of non-generalized exemplars (hyperrectangles consisting
of a single training instance). In the initial versions of NGE the
generalized exemplars can overlap and can be nested (corre-
sponding to rules with exceptions). Further investigations led
to the conclusion that avoiding the overlapping [10] and/or
the nesting [7] can improve the classification performance
of classifiers based on generalized exemplars. Currently the
versions which are still used in practice are BNGE (Batch
Non-overlapping Generalized Exemplars) proposed in [10] and
NNGE (Non-Nested Generalized Exemplars) proposed in [7]
and implemented in the Weka toolkit [11]. In this paper we
focus on NNGE and investigate the possibility of improving
its classification performance by evolutionary selection of
relevant hyperrectangles and attributes.

A. The General Structure of NNGE

In order to illustrate the NNGE learning process let
us consider a set of L training instances (examples),
(E1, E2, . . . , EL), each one containing the values of N at-
tributes (numerical or nominal). The aim of the learning
process is to construct a set of generalized exemplars (hy-
perrectangles), H = {H1, H2, . . . , HK}. A hyperrectangle
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usually covers a set of training instances belonging to the
same class and each of its dimensions is specified either by
a range of values (in the case of numerical attributes) or by
an enumeration of values (in the case of nominal attributes).
If during the learning process a hyperrectangle corresponding
to a given class covers a training instance belonging to a
different class then this training instance is considered to be
a conflicting example. The learning process is incremental,
for each example Ej the following three main steps being
applied: classification (the hyperrectangle Hk which is closest
to Ej is identified by using a distance-based criterion), model
adjustment (the hyperrectangle Hk is split if it covers a
conflicting example) and generalization (if it is possible, Hk

is extended in order to cover Ej). The general structure of the
NNGE is described in Algorithm 1.

Algorithm 1 The general structure of NNGE

1: H ← ∅
2: for j ∈ {1, . . . , L} do
3: if H = ∅ then
4: H ← H ∪Ej

5: else
6: Find Hk ∈ H such that D(Hk, Ej) ≤ D(Hq, Ej),

for all Hq ∈ H
7: if D(Hk, Ej) = 0 then
8: if class(Hk) �= class(Ej) then
9: Hk ← Split(Hk, Ej)

10: end if
11: else
12: H ′ ← Extend(Hk, Ej)
13: if H ′ overlaps with conflicting hyperrectangles

then
14: H ← H ∪ {Ej}
15: else
16: H ← H\{Hk} ∪ {H ′}
17: end if
18: end if
19: end if
20: end for

The classification step is based on the computation
of the distance D(E,H) between an example E =
(E1, E2, . . . , EN ) and a hyperrectangle H defined by its com-
ponents (H1, H2, . . . , HN) as given in Eq. (1). The component
Hi of a hyperrectangle is an interval [Hmin

i , Hmax
i ] in the case

of a numerical attribute and a finite set of values in the case
of a nominal attribute.

D(E,H) =

√√√√ N∑
i=1

wi
d(Ei, Hi)

Emax
i − Emin

i

(1)

The distances between the examples attributes and the
hyperrectangles ”sides” are given by Eq. (2) for numerical
attributes and by Eq. (3) for nominal attributes, respectively.
The parameters wi are weights corresponding to attributes and

are computed based on the mutual information between the
attribute and the class.

dnum(Ei, Hi) =

⎧⎨
⎩

0 if Ei ∈ [Hmin
i , Hmax

i ]
Ei −Hmax

i if Ei > Hmax
i

Hmin
i − Ei if Ei < Hmin

i
(2)

dnom(Ei, Hi) =

{
0 if Ei ∈ Hi

1 if Ei �∈ Hi
(3)

B. Avoiding the Exemplars Overlapping and Nesting

In order to avoid the existence of overlaped hyperrectangles
having different classes, the generalization (extension) of a
hyperrectangle is accepted only if the new hyperrectangle does
not overlap with hyperrectangles having a different class. If
there is an overlap, the generalization process is abandoned
and the training instance is added to the model as a non-
generalized exemplar.

On the other hand, in order to avoid the generation of
nested hyperrectangles, NNGE adjusts the hyperrectangle H
which covers a conflicting example E, i.e. D(E,H) = 0
and class(H) �= class(E), such that this example is no
more covered. This is realized by splitting the hyperrectangle
in a few other hyperrectangles and potentially some isolated
instances. This is one of the critical components of NNGE and
makes NNGE different with respect to other methods based
on generalized exemplars.

The splitting process consists of changing one of the dimen-
sions of the hyperrectangle. Since one of the goals is to limit
as much as possible the number of exemplars (especially of
non generalized ones) the choice of splitting attribute should
take this into account. In the case of nominal attributes this
is ensured by choosing the attribute for which the value in
the conflicting example is less frequent amongst the other
examples included in the hyperrectangle.

In the case of numerical attributes several criteria to choose
the splitting attribute can be identified. In our implementation
we used four criteria: (i) ”closest margin”; (ii) ”balanced
split”; (iii) ”maximal bandwidth”; (iv) ”minimal bandwidth”.
The first one (”closest margin”) corresponds to the variant of
NNGE implemented in Weka and consists of choosing the
attribute for which the corresponding value of the conflicting
attribute is the closest to a margin of the covering hyper-
rectangle (Fig. 2). In the case of a tie, the attribute leading
to the largest number of training examples included in one
of the splitting hyperrectangles is chosen. The second variant
(”balanced split”) chooses the attribute for which the ratio of
the distances between the value of the conflicting example
and the hyperrectangle margins is as close as possible to 1
(Fig. 1). This approach would lead to a more balanced split
than the previous one. The last two variants are based on
analyzing the size of the ”free” space between the resulting
hyperrectangles (this space would contain only the examples
having exactly the same value as the conflicting instance for
the splitting attribute). Fig. 2 illustrates the case when the
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Fig. 1. Splitting the initial hyperrectangle (dashed border) by the first attribute
(the conflicting instance is denoted by x)
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Fig. 2. Splitting the initial hyperrectangle (dashed border) by the second
attribute (the conflicting instance is denoted by x)

maximal bandwidth is chosen (corresponding to the second
attribute) while Fig. 1 illustrates the case of the minimal
bandwidth (corresponding to the first attribute). In all four
cases the initial hyperrectangle is divided in at least two
hyperrectangles: one for the examples having the value of
the splitting attribute strictly higher than the value of the
conflicting instance (H1 in Figs. 1,2) and one containing
the examples corresponding to strictly smaller values (H2

in Figs. 1,2). The examples having the same value of the
splitting attribute as the conflicting instance will either form
a different hypperrectangle or will remain as non-generalized
exemplars. Since there is no best splitting for all cases we used
a combined version: at each splitting stage all four variants
are tried and that leading to the smallest number of non-
generalized examplars is chosen. A preliminary analysis (not
presented in this paper) illustrated that this approach improves
the behavior of the original NNGE [7] which uses only the
”closest margin” variant. In the case of mixed attributes the
splitting one is chosen between the best nominal and the best
numerical attributes, based on the same criterion: minimization
of the number of non-generalized exemplars.

III. PRUNING OF CLASSIFICATION MODELS AND RELATED

WORK

There are two main approaches in reducing the size of
classifiers: pre-pruning and post-pruning. The main examples
of pre-pruning approaches are those aiming to select (prune,
edit) the ”good” and ”clean” training instances (or prototypes)
and those aiming to select the relevant attributes. Post-pruning
is applied to the induced model, e.g. decision trees pruning or
rules pruning.

A. Instance and Attribute Selection

The number of existing techniques for instance and/or
attributes selection is impressing. Since the selection is a
hard combinatorial optimization problem the evolutionary al-
gorithms proved to be effective. For instance, evolutionary
attribute selection is able to deal well with the interaction
between attributes [4] which explains the large number of
evolutionary attribute selectors. A similar situation arises in the
case of instance selection (for a recent review on evolutionary
instance selection see [2]). The evolutionary algorithms proved
also to be effective for simultaneous selection of instances and
attributes [8].

B. Evolutionary Selection of Nested Generalized Exemplars

In [5] was proposed a first approach for evolutionary se-
lection of hyperrectangles, called EHS-CHC. The selection
process starts from a set of hyperrectangles generated using
a simple heuristic: for each instance in the training set the
hyperrectangle covering the closest k nearest neighbours be-
longing to the same class (the k + 1 closest nearest neighbor
should belong to a different class) as the processed instance
is constructed. The generated hyperrectangles can overlap or
can be nested. The selection process is based on the evolution
of a population of binary encoded elements corresponding to
various subsets of the initial set of hyperrectangles. Despite
the simplicity of the approach it proved to be surprinsingly
effective both with respect to the predictive accuracy of the
resulting classifier and with respect to the reduction of the
number of hyperrectangles. Recently, an improved variant,
based on a preliminary noise filtering of the training set, has
been proposed and analyzed for a large number of datasets
[6].

IV. EVOLUTIONARY PRUNING IN NNGE

Once a set H = {H1, H2, . . . , HK} of hyperrectangles
has been generated by the NNGE algorithm it can be post-
processed in order to reduce its size and, hopefully, to improve
the classification accuracy. Following the idea of the hyper-
rectangles selection presented in [5] and extended in [6] we
developed an evolutionary pruning algorithm acting as post-
processor of the results produced by NNGE. The first version
of the algorithm, called EP-NNGE (Evolutionary Pruning in
NNGE) is based on the idea of evolving a population of
M binary strings containing K components. Each element,
x, of the population corresponds to a subset of H, e.g. if a
component xk has the value 1 it means that Hk is selected into
the model, while if it is 0 it means that Hk is not selected. The
quality of an element x is quantified, as in EHS-CHC, using
two measures: one related to the accuracy of the classifier
based on the selected hyperrectangles (H(x)) and the other one
related to the reduction of the model size. Thus the fitness is
given by Eq. (4) where Acc denotes the accuracy, |H| denotes
the number of hyperrectangles and λ ∈ (0, 1) is a parameter
controlling the compromise between the two quality measures.

f(x) = λAcc(H(x)) + (1− λ)
|H| − |H(x)|

|H| (4)
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The evolutionary algorithm is inspired by the CHC adaptive
search algorithm [3], also used in [5] and [6]. The general
structure of the algorithm is described in Algorithm 2.

Algorithm 2 The general structure of EP-NNGE
1: Random initialization of the population

X(0)← {x1(0), . . . , xM (0)}
2: g ← 0
3: Evaluate X(0)
4: while the stopping condition is false do
5: Copy X(g) to X(g + 1)
6: for i ∈ {1, . . .M} do
7: Select two random parents xj1 (g) and xj2 (g)
8: if Hamming(xj1(g), xj2(g)) > K/4 then
9: Construct yj1(g) and yj2(g) from the parents by

uniform crossover
10: Evaluate yj1(g) and yj2(g) and append them to

X(g + 1)
11: end if
12: end for
13: Truncate X(g + 1) by retaining its best M elements
14: g ← g + 1
15: end while

The second approach we propose in this paper is that of
simultaneously selecting hyperrectangles and attributes. In this
case each element in the population has K + N components
(K being the initial number of hyperrectangles and N being
the total number of attributes). The corresponding algorithm
(EPA-NNGE) has the same structure as EP-NNGE and the
population elements are evaluated also by using Eq. (4).
The main difference between EPA-NNGE and EP-NNGE
is related to the computation of the classification accuracy:
in the computation of the distance between a test instance
and a hyperrectangle, all non-selected attributes (as are they
specified by the corresponding part xa of the population
elements) are just ignored, meaning that instead of Eq. (1)
is used the distance given by Eq. (5).

Dx(E,H) =

√√√√ N∑
i=1

xa
iwi

d(Ei, Hi)

Emax
i − Emin

i

(5)

V. EXPERIMENTAL RESULTS

The aim of the experimental analysis was to assess the
ability of the evolutionary pruning algorithms (EP-NNGE and
EPA-NNGE) to improve the classification accuracy of NNGE
and to reduce the size of the induced model (the number of
hyperrectangles).

A. The Experimental Setup

The experiments were conducted using 21 datasets
from KEEL repository [1]. These datasets are constructed
based on those at UCI Machine Learning Repository
(http://www.ics.uci.edu/ mlearn/ MLRepository.html) but they
are already sliced in folds (e.g. 10) in order to allow a

cross-validation based comparison between different methods.
These datasets were selected in order to allow us to com-
pare the results we obtained with those reported in [6]. The
characteristics of the datasets (number of instances, attributes
and classes) are presented in the first columns of Table I.
Both EP-NNGE and EPA-NNGE were used with M = 50
elements in the population and as stopping criterion was used
a maximal number of generations (100) combined with a
maximal number of generations without progress (50). These
values are consistent with those used in [6] (M = 50, 200
generations). No parameter tuning and no effort to improve
the behavior of the evolutionary algorithm was done in or-
der to illustrate that a simple evolutionary selection which
does not involve many computational resources can improve
significantly the behavior of NNGE. All estimations of the
classification accuracy and of the model size were obtained
by 10-fold cross-validation, and for each training/testing pair
the evolutionary selection process was independently applied
for 10 times. Based on all 100 values the average and the
standard deviation values were computed.

B. Influence of Evolutionary Pruning on the NNGE Classifi-
cation Performance

In order to assess the positive impact of the evolutionary
pruning on the classification performance of NNGE the ave-
rage accuracy on the testing datasets obtained by the proposed
algorithms (EP-NNGE and EPA-NNGE) was compared with
the accuracy obtaing by the non-pruned version of NNGE
and with the best corresponding results reported in [6]. The
results are presented in Table I. In all cases, EP-NNGE and
EPA-NNGE led to significantly higher accuracy than the non-
pruned NNGE. All averaged accuracies obtained by EPA-
NNGE are higher than the best values reported in [6] and in 17
out of 21 the superiority proved to be statistically significant.
The statistical analysis was based on a Student test with 0.01
as level of significance. The significantly better values are
boldfaced in Table I (when two values on the same row are
boldfaced it means that the difference between them is not
significant). Concerning the comparison between EP-NNGE
and EPA-NNGE, they proved to behave similarly in 15 out
of 21 cases. In 5 cases EPA-NNGE led to significantly better
results than EP-NNGE while in only one case EP-NNGE was
significantly better than EPA-NNGE.

Since in this experiment the focus was on improving the
classification accuracy, the evolutionary process was guided by
a fitness function based on a high value for λ (e.g. λ = 0.995).
The influence of the parameter λ on the accuracy and on the
reduction of the model size (the hyperrectangle reduction ratio
is defined as (|H| − |H(xbest)|)/|H|) has been analyzed for
several datasets obtaining similar patterns of behavior. Results
corresponding to two data sets (”breast” and ”haberman” are
illustrated in Figs. 3 and 4). As it would be expected, by
increasing the value of λ the value of accuracy also increases
while the reduction ratio decreases. An interesting aspect is
the fact that for all analyzed cases the accuracy corresponding
to the non-pruned NNGE is obtained for λ near 0.2, while for
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TABLE I
CLASSIFICATION ACCURACY (%)

No. Dataset #Inst. #Num. #Nom. #Cl. NNGE EP-NNGE EPA-NNGE Best rule based classifier [6]

(avg±stdev) (avg±stdev) (avg±stdev) Acc. Method

1 appendicitis 106 7 0 2 80.36±7.6 93.94±6.8 96.89±6.3 86.91±11.5 Filtered EHS-CHC

2 australian 690 8 6 2 85.21±5.5 92.20±3.0 94.55±2.7 85.80±2.9 Filtered EHS-CHC

3 breast 286 0 9 2 73.75±7.2 90.44±6.4 94.10±5.7 73.80±6.2 EHS-CHC

4 bupa 345 6 0 2 59.94±6.7 87.88±3.4 90.28±5.2 65.47±4.5 BNGE

5 cleveland 297 13 0 5 52.31±7.9 77.97±7.0 82.93±6.6 56.81±6.5 EHS-CHC

6 contraceptive 1473 9 0 3 44.94±3.6 75.40±4.3 70.80±4.9 53.23±5.2 RIPPER

7 crx 125 6 9 2 81.96±5.6 93.85±3.5 94.33±10.4 84.35±4.7 C4.5Rules

8 dermatology 366 34 0 6 96.90±3.3 97.73±2.9 99.34±1.2 97.00±2.4 Filtered EHS-CHC

9 ecoli 336 7 0 8 83.32±4.2 89.87±4.9 90.54±3.9 82.16±4.6 BNGE

10 glass 214 9 0 7 68.70±13.5 76.09±8.9 86.42±9.0 73.61±11.9 1NN

11 haberman 306 3 0 2 68.32±7.0 93.38±4.4 90.85±6.4 74.49±6.0 Filtered EHS-CHC

12 hepatitis 155 19 0 2 86.00±11.3 93.07±7.6 98.35±4.5 83.88±6.9 RISE

13 iris 150 4 0 3 96.00±4.7 98.00±3.2 99.33±2.1 96.67±4.7 Filtered EHS-CHC

14 led7digit 500 7 0 10 63.40±6.8 72.52±6.1 78.28±6.2 71.40±4.8 C4.5Rules

15 mammographic 961 5 0 2 73.66±4.8 92.29±3.6 89.73±6.2 83.04±4.4 INNER

16 newthyroid 215 5 0 3 93.07±3.9 96.91±3.3 97.79±2.3 97.23±2.3 1NN

17 pima 768 8 0 2 73.96±3.2 88.94±4.1 89.69±3.9 75.01±3.6 EHS-CHC

18 sonar 208 60 0 2 59.11±9.7 81.99±9.7 94.35±6.2 85.55±7.5 1NN

19 wine 178 13 0 3 92.15±4.6 95.52±3.5 99.44±1.8 96.60±2.9 BNGE

20 wisconsin 683 9 0 2 96.79±2.1 98.78±1.5 99.10±1.1 97.00±2.8 BNGE

21 zoo 101 16 0 7 95.16±6.6 96.00±4.9 100±0 96.83±5.2 RISE
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Fig. 3. Influence of λ on the EP-NNGE accuracy gain and hyperrectangles
reduction. Dataset: breast

λ close to 0.5 the accuracy and the model reduction ratio are
almost equal.

C. Influence of Evolutionary Pruning on the Model Reduction

Even if the focus of the experiments was on improving
the classification performance we also remarked that both EP-
NNGE and EPA-NNGE led to a significantly smaller number
of hyperrectangles than the non-pruned NNGE. On the other
hand, when we compare EP-NNGE with EHS-CHC [5] and
Filtered EHS [6] the difference is not so significant. For
instance the number of hyperrectangles induced by EP-NNGE
is smaller than that induced by EHS-CHC (based on λ = 0.5)

�

�

�

�

�
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�
�

�
�

�
�

�
� � � �

EP�NNGEAccuracy ���
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Acc,H.red.

Fig. 4. Influence of λ on the EP-NNGE accuracy gain and hyperrectangles
reduction. Dataset: haberman

for 16 datasets, but is significantly higher in the case of three
datasets (”contraceptive”, ”led7digit”, ”mammographic”). This
result can be explained by the fact that these three datasets
contain a large number of instances. However, when compared
to filtered-EHS, a statistical analysis based on the Wilcoxon
signed rank test revealed that there is no overall significant
difference between the number of hyperrectangles selected
by EP-NNGE and by the filtered-EHS. The influence of
the evolutionary pruning implemented in EPA-NNGE on the
induced model performance and size is graphically illus-
trated for all 21 datasets in Figs. 5 and 6. Figure 5 illus-
trates the accuracy gain (computed as (Acc(EPA-NNGE) −
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Accuracy gain ��� Hyperrectangles reduction ��� Attributesreduction ���
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Fig. 5. EPA-NNGE vs. NNGE: accuracy gain(%), hyperrectangles reduc-
tion(%) and attributes reduction(%) for 21 datasets

Acc(NNGE))/Acc(NNGE) · 100), the ratio of selected hyper-
rectangles (computed as |HEPA-NNGE|/|HNNGE| ·100) and
the ratio of selected attributes (computed as NEPA-NNGE/N ·
100). The largest gain in accuracy (around 50%) was obtained
for ”bupa”, ”cleveland”, ”contraceptive” and ”sonar” datasets.
This can be explained by the fact that NNGE provided low
accuracy for these data. On the other hand the smallest gain in
accuracy (smaller than 10%) was obtained for ”dermatology”,
”iris”, ”newthyroid”, ”wisconsin” and ”zoo” datasets (for all
of these, NNGE led to a rather high classification accuracy,
leaving no room for significant improvements). The number of
hyperrectangles was reduced with at least 50% for all datasets.
The highest reduction (the number of selected hyperrectan-
gles is less than 20% of the initial number) was obtained
for ”appendicitis”, ”hepatitis”, ”newthyroid” and ”wisconsin”
datasets. On the other hand the smallest reduction (50%)
was obtained for ”contraceptive” and ”zoo”. The number of
selected attributes is between 40% and 60% of the initial
number for almost all datasets. The smallest reduction in the
number of attributes was remarked for ”ecoli” and ”led7digit”
datasets. Another analysis we conducted was related to the
importance of non-generalized hyperrectangles. The ratio be-
tween the number of non-generalized exemplars and the total
number of exemplars is illustrated in Figure 6 both for NNGE
and EPA-NNGE. For all datasets the ratio of non generalized
exemplars is smaller in the case of EPA-NNGE than in the
case of NNGE. There are also five datasets (”dermatology”,
”hepatitis”, ”newthyroid”, ”wine” and ”wisconsin”) for which
all non generalized exemplars were eliminated by the evolu-
tionary pruning process. This suggests that for these datasets
the non generalized exemplars do not play a significant role.

VI. CONCLUSIONS AND FURTHER WORK

As experimental results suggest the evolutionary pruning
of hyperrectangles induced by NNGE leads to a signifi-
cant improvement of the classification performance and to
a reasonable reduction of the model size. The simultaneous
selection of hyperrectangles and attributes proved to be very
effective, i.e. the classification accuracy is higher than that

NNGE� Singlehyper. ratio ��� EPA�NNGE� Singlehyper. ratio ���

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

10

20

30

40

50

60

Fig. 6. EPA-NNGE vs. NNGE: ratio (%) of non generalized exemplars
(single point hyperrectangles) for 21 datasets

obtained by the best rule-based classifiers identified in the
experimental analysis conducted in [6]. All these results were
obtained by applying a simple evolutionary algorithm and
a simple aggregation approach in dealing with the multi-
objective character of the problem (both the accuracy and
the model size should be optimized). This means that there
is still room for improvements by changing the evolutionary
approach. Further work will also address the scalability issue
in the context of the pruned NNGE.
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