
Population-based Metaheuristics for Tasks

Scheduling in Heterogeneous Distributed

Systems

Flavia Zamfirache, Marc Fr̂ıncu, Daniela Zaharie

Department of Computer Science, West University of Timişoara, Romania
{zflavia,mfrincu,dzaharie}@info.uvt.ro

Abstract. This paper proposes a simple population based heuristic for
task scheduling in heterogeneous distributed systems. The heuristic is
based on a hybrid perturbation operator which combines greedy and
random strategies in order to ensure local improvement of the schedules.
The behaviour of the scheduling algorithm is tested for batch and online
scheduling problems and is compared with other scheduling heuristics.

1 Introduction

Since the work of Braun et al. [1] which illustrated the fact that genetic algo-
rithms can generate good solutions for task scheduling problems, a lot of other
population-based metaheuristics were proposed (e.g. evolutionary algorithms [2],
ant systems [7], memetic algorithms [10]). Unlike the genetic algorithm in [1]
which is based on classical mutation and crossover operators, the recent ap-
proaches use specific local search operators. Most researchers identified as effec-
tive operators those involving a rebalancing of the load on different processors by
moving or swapping tasks between processors. Currently there exist both simple
and sophisticated ”rebalancing” operators. The aim of this paper is to identify
the basic components of such operators and to design a simple population-based
scheduler involving as few as possible search mechanisms.

The addressed problem is that of assigning a set of independent and non-
preemptive tasks to a set of resources (e.g. machines, processors) such that the
maximal execution time over all resources, i.e. makespan, is minimized. The as-
signment of tasks is based on estimations of the execution times of the tasks
on various resources. Let us consider a set of n tasks, {t1, . . . , tn}, to be sched-
uled on a set of m < n processors, {p1, . . . , pm}. Let us suppose that for each
pair (ti, pj) we know an estimation ET (i, j) of the time needed to execute the
task ti on the processor pj . A schedule is an assignment of tasks to resources,
S = (pj1 , . . . , pjn

), where ji ∈ {1, . . . ,m} and pji
denotes the processor to which

the task ti is assigned. If Tj denotes the set of tasks assigned to processor pj

and T 0
j denotes the time moment since the processor j is free then the comple-

tion time corresponding to this processor will be CTj = T 0
j +

∑
i∈Tj

ET (i, j).
The makespan is just the maximal completion time over all processors, i.e.

2

makespan = maxj=1,m CTj . The problem to be solved is that of finding the
schedule with the minimal makespan value. In real distributed systems tasks
arrive continuously and have to be assigned to resources either as they arrive
or when a scheduling event is triggered. In this work we analyze both the case
when the scheduling event is triggered when a given number of tasks have arrived
(batch scheduling) and the case when the scheduling is activated at pre-specified
moments of time (online scheduling). The main idea of the proposed population-
based heuristic is described in Section 2. Sections 3 and 4 present the numerical
results obtained for batch and online scheduling problems while Section 5 con-
cludes the paper.

Table 1. Characteristics of the strategies used to construct initial schedules (Notations:
CT - current completion time, ET - execution time, ECT - estimated completion time)

Task selection Processor selection Strategy

Random Random Random
Random Min CT Opportunistic Load Balancing (OLB)
Random Min ET Minimum Execution Time (MET)
Random Min ECT Minimum Completion Time (MCT)
Increasing min ECT Min ECT MinMin
Decreasing min ECT Min ECT MaxMin

2 Designing Heuristics for Task Scheduling

The construction of a (sub)-optimal schedule is usually based on creating an
initial schedule which is then iteratively improved. When constructing an initial
schedule there are two decisions to take: (i) the order in which the tasks are as-
signed to processors; (ii) the criterion used to select the processor corresponding
to each task. Depending on these elements there exist several strategies [1] as
presented in Table 1. Each of these strategies generates initial schedules with a
specific potential of being improved. Therefore it would be beneficial to use not
just one strategy but to use a population of initial schedules constructed through
different strategies.

The initial schedules created by the scheduling heuristics are usually non-
optimal and thus they can be improved by moving or swapping tasks between
resources. Depending on the criteria used to select the source and destination
resources, and the tasks to be relocated there can be designed a lot of strategies
to perturb a schedule [9]. Most perturbation operators involved in the scheduling
heuristics used in task scheduling are based on two typical operations: ”move”
one task from a resource to another one and ”swap” two tasks between their
resources. In order to obtain an immediate improvement in the schedule, the
most loaded resource (which determine the makespan) should be involved in the
operation. The largest improvement can be obtained by an exhaustive search for

3

Table 2. Characteristics of the strategies used to perturb the schedules

Source Destination Strategy
Processor Task Processor Task

Random Random Random - Random Move
Most loaded (max CT) Random Best improvement - Greedy Move
Most loaded (max CT) Random Least Loaded (min CT) Random Greedy Swap

the pair consisting of the task to be moved and the destination processor. Be-
sides the fact that this operation is costly (O(mn)) it can fail to generate in just
one step a schedule with a smaller makespan. For instance, if there are several
processors reaching the maximal completion time it is necessary to apply for
several times the ”move” operation in order to obtain a decrease of the overall
makespan. On the other hand if there is no pair (task, destination processor)
which allows to decrease the makespan of the source processor then the ”swap”
operation should be used instead. In the case of an exhaustive search for the pair
of tasks to be swapped the complexity order could be in the worst case O(n2)
which for a large number of tasks becomes impractical. Therefore from the large
number of possible choices of source and destination processors and of tasks to
be relocated we selected those which do not involve a systematic search in the
set of tasks (i.e. the tasks to be relocated are randomly chosen). The strate-
gies presented in Table 2 were selected based on their simplicity, efficiency and
randomness/greediness balance. The ”random move” corresponds to the ”local
move” operator [10] and is similar to the mutation operator used in evolutionary
algorithms. The ”greedy move” operator is related to the ”steepest local move”
in [10] but with a higher greediness since it always involves the most loaded
processor. The ”greedy swap” is similar to ”steepest local swap” in [10] but it is
less greedy and less expensive since it does not involve a search over the set of
tasks.

Since one perturbation step does not necessarily lead to an improvement in
the quality of a schedule we consider an iterated application of the perturbation
step until either n iterations were executed (each task has the chance to be
moved) or a maximal number, gp, of unsuccessful perturbations is reached.

The influence of gp on the quality of the schedule is analyzed in the next
section. On the other hand in order to exploit the search abilities of each strategy
it seems natural to combine several perturbation operators. Thus the strategies
in Table 2 are combined as described in the Algorithm 1 (HybridPerturbation).
This hybrid perturbation has a structure similar to the ”re-balancing” mutation
described in [10]. However there are some differences between them. In [10] the
”swap” perturbation is applied before ”move” perturbation while in the hybrid
perturbation described in Algorithm 1 the order is reversed. This apparently
minor difference influences the overall cost of the perturbation as the application
of the ”move” operation is less costly than that of ”swap” and it can induce a
larger gain in the makespan. On the other hand in [10] only one perturbation
step is applied to a schedule at each evolutionary generation. Moreover in the

4

Algorithm 1 The general structure of the population based scheduler

SimplePopulationScheduler
(SPS)

1: Generate the set of initial schedules:
2: S ← {S1, . . . , SN}
3: while 〈the stopping condition is false〉 do

4: for i = 1, N do

5: S′

i ←perturb(Si)
6: end for

7: S ← select(S, {S′

1, . . . , S
′

N})
8: end while

SimplePerturbation(S)

1: i← 0; fail← 0
2: while i < n and fail< gp do

3: i← i + 1
4: if GreedyMove/Swap(S) is successfull

then

5: fail← 0; S←GreedyMove/Swap(S)
6: else

7: fail←fail+1
8: if random(0, 1) < pm then

9: S← RandomMove(S)
10: end if

11: end if

12: end while

13: return S

HybridPerturbation(S)

1: i← 0; fail← 0
2: while i < n and fail< gp do

3: i← i + 1
4: if GreedyMove(S) is successfull

then

5: fail← 0; S←GreedyMove(S)
6: else

7: if GreedySwap(S) is success-
full then

8: fail← 0; S←GreedySwap(S)
9: else

10: fail←fail+1
11: if random(0, 1) < pm then

12: S← RandomMove(S)
13: end if

14: end if

15: end if

16: end while

17: return S

”re-balancing” operator the random perturbation is applied any time when the
”swap”-”move” duo is unsuccessful while in our case the random perturbation
is interpreted as a mutation, thus it is applied with a small probability (e.g.
pm = 1/n).

Having the perturbation as key operator we designed a simple population-
based heuristics described in Algorithm 1 (SPS - SimplePopulationScheduler).
Besides the perturbation operator which can be a simple (SimplePerturbation)
or a hybrid one (HybridPerturbation) there are two other elements which can
influence the behaviour of the algorithm: initialization and selection. The use
of some seed schedules in the initial population has been emphasized by many
authors [1, 6, 10]. Consequently, besides the plain random schedules we included
in the initial population also schedules generated with the heuristics listed in Ta-
ble 1. During the iterative process, each schedule, Si, in the current population
is perturbed leading to a new schedule S′

i (it should be mentioned that in the
case of unsuccessful perturbation, Si could remain unchanged). The schedules
corresponding to the next iterative step (generation) are selected from the sets of
current and perturbed schedules using a binary tournament approach (the sched-
ule with the smallest makespan from a randomly selected pair of schedules is
selected). To ensure the elitism, the best element of the population is preserved.

5

A preliminary analysis on the role of crossover in generating good schedules il-
lustrated that no significant gain is obtained by using crossover (at least uniform
and one cut-point crossover). Since the number of processors is usually signifi-
cantly smaller than the number of tasks almost all processors are involved in the
schedules included in the population. Thus the set of schedules generated by a
crossover operator would not be significantly different from the set of schedules
which could be generated by applying only the iterated perturbation.

3 Numerical Results for Batch Scheduling

Let us consider the case where the scheduling event is activated when a given
number of tasks arrived to the scheduler. This is a classical batch scheduling
problem characterized by the fact that some data concerning the estimated ex-
ecution time of tasks on different resources is known. As test data we have used
those introduced in [1] which provides matrices containing values of the ex-
pected computation time (ET) generated based on different assumptions related
to tasks and resources heterogeneity (low and high) and consistency (consistent,
semi-consistent and inconsistent). The data correspond to the case of 512 tasks
to be scheduled on 16 processors.

The aim of the numerical study was to analyse the influence of the pertur-
bation strategies on the performance of a Simple Population-based Scheduler
(SPS) having the structure described in Algorithm 1. The parameters involved
in the algorithm were set based on preliminary parameters tuning leading to the
following values: (i) 25 elements in the population (populations of sizes 50, 100
and 200 were also analysed); (ii) a maximal number of successive failures (gp) in
the perturbation operator equal to 150 (values between 10 and 300 were tested;
the influence of this parameter on the performance of the scheduler is illustrated
in Figure 1 for three test cases); (iii) a probability of applying random pertur-
bations (pm) equal to 1/n ≃ 0.002. The maximal number of iterations involved
in the stopping conditions was set to 8000. This is in accordance with the values
used in literature for evolutionary schedulers [1]. The average time needed to
generate a schedule is around 40s (on a Intel P8400 at 2.26GHz) which is also
consistent with the time reported in [10] (90s on a AMD K6(tm) at 450MHz).

The analysed initialization strategies are: (i) random initialization; (ii) use of
the scheduling heuristics described in Table 1 and randomly initialize the other
elements; (iii) use random perturbations of the scheduling heuristics in Table 1;
(iv) use the MinMin heuristic and random perturbations of this. As expected, the
best results were obtained when the initial population contains seeds obtained by
using scheduling heuristics while the worst behaviour corresponds to purely ran-
dom initialization. The numerical results presented in Table 3 correspond to the
three perturbation variants (move-based, swap-based and the hybrid one) and
to a state of the art memetic algorithm hybridized with Tabu Search (MA+TS)
[10]. Even if based on simpler operators, the algorithm proposed in this work
provides schedules close in quality to those generated by MA+TS. Moreover in

6

Table 3. Averages and standard deviations (computed by 30 independent runs) of
the makespan obtained by the population-based scheduler with different perturbation
strategies. The best and the second best values (validated by a t-test with a significance
level of 0.05) for each problem are in bold and in italic, respectively.

Pb. GreedyMove GreedySwap Hybrid MA+TS[10]

u c hihi 7684852.40(±24798) 7689131.76(±26971) 7609663.13(±30673) 7530020.18

u c hilo 155248.33(±551) 155495.10(±158) 154979.43(±180) 153917.17

u c lohi 251445.60(± 809) 250558.63(±1028) 248903.70(±1014) 245288.94

u c lolo 5255.06(±8.90) 5258.4(±7.65) 5235.00(±5.32) 5173.72

u i hihi 3072453.70(±18667) 3019756(±14323) 3014083.63(±21420) 3058474.90

u i hilo 75222.90(±318.46) 74684.433(±225.12) 74553.20(±130.78) 75108.49

u i lohi 106309.56(±706.70) 105261.20(±561.41) 105013.60(±516.63) 105808.58

u i lolo 2617.26(±16.04) 2590.83(±8.18) 2585.70(±6.05) 2596.57

u s hihi 4382845.80(±50248) 4352017.96(±36899) 4316556.23(±29236) 4321015.44

u s hilo 98036.16(±241.10) 98302.366(±363.54) 97964.86(±364.56) 97177.29

u s lohi 127565.00(±613.97) 127026.63(±499.45) 126763.23(±564.75) 127633.02

u s lolo 3538.96(±19.28) 3526.53(±11.24) 3520.80(±11.39) 3484.08

the case of inconsistent test cases (”u i **” problems) the proposed scheduler
using the hybrid perturbation operator provides better results.

0 100 200 300 400
7.55

7.6

7.65

7.7

7.75

7.8

7.85

7.9

7.95
x 10

6

M
ak

es
pa

n

0 100 200 300 400
4.25

4.3

4.35

4.4

4.45

4.5
x 10

6

Maximal number of consecutive failures

M
ak

es
pa

n

0 100 200 300 400
3.01

3.02

3.03

3.04

3.05

3.06

3.07

3.08
x 10

6

M
ak

es
pa

n

Test file: u−c−hihi Test file: u−s−hihi Test file: u−i−hihi

Fig. 1. Influence of the maximal number of consecutive mutations without improve-
ment (gp) on the makespan.

4 Numerical Results for Online Scheduling

For online scheduling we considered a simulation model where task executions
times (ET) follow a Pareto distribution with α = 2 and the tasks arrival rate
is modelled based on statistical results extrapolated from real world traces [3].

7

A total number of 500 tasks were generated for every test. Rescheduling was
done every 250 time units given a minimal execution time of 1000 units. All
tests were repeated 20 times in order to collect statistics. The main aim of the
numerical tests was to analyze if using populations of schedules one can obtain
improvements in the quality with an acceptable loss in the scheduling time.
Therefore several dynamic scheduling heuristics with ageing have been tested
against their corresponding population based versions which were constructed
by using the specific scheduling heuristics as perturbation operators in SPS.
Their behaviour has also been compared with the SPS algorithm based on a non-
iterated hybrid perturbation (at each perturbation step the hybrid perturbation
is applied only once). Among the online scheduling algorithms we tested a flavour
of DMECT as described in [4], the MinQL heuristic [5] and the classic MinMin
and MaxMin with ageing. DMECT periodically computes for every task the
Local Waiting Time (LWT) - the time since it was assigned to the current
processor queue - and a σ value that depends on the implementation and could
take into account the estimated execution time (ET). This paper uses the values
given in [4]. From these values a decision on whether to move the task or not
is taken by checking if the σ − LWT is smaller than 0 or not. MinQL allows
for optimal balancing the tasks inside resources while taking into account both
the age of the task and the priority of local tasks. It uses a backfilling approach
where multiple selection conditions for the destination resource can be used. The
version used for testing in this paper uses a selection based on the CPU speed.

The population variants of the two previously mentioned scheduling heuris-
tics use a population of 25 elements initialized both with random schedules
(60%) and by using the MinMin heuristics (40%). The scheduling heuristics is
then applied on every element to generate perturbed schedules and the surviving
elements are selected by tournament. The procedure stops when an improvement
in the makespan of at least 10% is no longer noticed after a given number of
iterations (e.g. 600). Table 4 presents the main benefits of population based
scheduling heuristics (pDMECT and pMinQL) when used in online scheduling.
Both pDMECT and pMinQL obtained significantly better results than their
non-populational variants, with pDMECT having a behaviour similar to SPS
(the best values in Table 4 are bold-faced and they were validated using a t-test
with 0.05 as level of significance). The only notable difference in the behaviour of
pDMECT and SPS was that of speed. pDMECT required almost 30 seconds to
build a schedule while the simple population-based scheduler needed only three
seconds on average. The reason for this difference lies in the complexity of one
scheduling step in pDMECT, O(m × n), compared with that of one perturba-
tion step in SPS, O(m), where m represents the number of processors and is
significantly smaller than n which is the number of tasks.

5 Conclusions

The simple population-based scheduler using an iterated hybrid perturbation
operator provides solutions to batch scheduling problems which are compara-

8

Table 4. Average makespan (MS) obtained by online scheduling heuristics and their
population based variants

DMECT pDMECT MinQL pMinQL SPS MaxMin MinMin

MS 66556.20± 49409.11± 76564.40± 54332.89± 46996.76± 61165.15± 68774.87±
15097.85 9522.13 18114.51 9891.15 8812.87 11936.19 15101.05

Time 66.56 ± 28343.04± 3.06 ± 2254.64± 2777.70± 684.49± 669.21±
(ms) 15.50 10702.15 2.52 314.45 578.22 242.15 209.99

ble in quality with those generated by schedulers using more sophisticated local
search operators [10]. The main benefit is obtained in the case of highly hetero-
geneous and inconsistent distributed environments. The idea of using a simple
population-based heuristic proved to ensure a good compromise between solu-
tion quality and computational cost also in the case of online scheduling. Further
work will address the case of interrelated tasks and that of using other metrics
such as the Total Processing Consumption Cycle which is an alternative to the
makespan and is independent of the hardware.
Acknowledgments. This work is supported by Romanian project PNCD II 11-028/

14.09.2007 (NatComp).

References

1. T.D. Braun, H.J. Siegel, N. Beck et al., A comparison of eleven static heuristics
for mapping a class of independent tasks onto heterogeneous distributed computing
systems. Journal of Parallel and Distributed Computing, 61(6), pp. 810-837, 2001.

2. J. Carretero, F. Xhafa, Using Genetic Algorithms for Scheduling Jobs in Large
Scale Grid Applications. Journal of Technological and Economic Development - A
Research Journal of Vilnius Gediminas Technical University, 12(1), pp. 11-17, 2006.

3. D. G. Feitelson, Workload modeling for computer systems performance evaluation,
http://www.cs.huji.ac.il/ feit/wlmod/, 2010.

4. M. Frincu, Dynamic Scheduling Algorithm for Heterogeneous Environments with
Regular Task Input from Multiple Requests. In LNCS 5529, pp. 199–210, 2009.

5. M. Frincu, G. Macariu, A. Carstea, Dynamic and Adaptive Workflow Execution
Platform for Symbolic Computations. Pollack Periodica, Akademiai Kiado, 4(1),
pp. 145–156, 2009.

6. A.J. Page, T.M. Keane, T.J. Naughton, Multi-heuristic dynamic task allocation
using genetic algorithms in a heterogeneus distributed system. J. Parallel Distrib.
Comput., doi:10.1016/j.jpdc.2010.03.11, 2010.

7. G. Ritchie, J. Levine, A hybrid ant algorithm for scheduling independent jobs in het-
erogeneous computing environments. In Proc. of 23rd Workshop of the UK Planning
and Scheduling Special Interest Group, 2004.

8. A.J Page,T. J. Naughton, Dynamic task scheduling using genetic algorithms for
heterogeneous distributed computing. In Proc. of 19th IEEE/ACM International
Parallel and Distributed Processing Symposium, Denver, pp. 1530-2075, 2005.

9. F. Xhafa, A. Abraham, Computational models and heuristic methods for Grid
scheduling problems. Future Generation Computer Systems 26, pp. 608-621, 2010.

10. F.Xhafa, A Hybrid Evolutionary Heuristic for Job Scheduling on Computational
Grids, in Hybrid Evolutionary Algorithms, LNCS 75, pp.269-311, 2007.

