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Abstract: Differential Evolution (DE) is one of the most popular optimization metaheuristics, with a significant
number of variants and a large area of applications for real-world problems. The current knowledge on the DE
behavior is mainly based on experiments involving benchmark test suites and less on theoretical results. However,
in the last years some encouraging results concerning the DE dynamics have been reported. This paper reviews
the main theoretical results concerning DE convergence, stability and probability distribution of the populations
generated during evolution. A particular emphasis is placed on the theoretical results which lead to practical
insights or explain empirical rules concerning the choice of DE control parameters. A new theoretical result
concerning the population variance evolution in the case of DE/either-or variant is also presented.
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1 Introduction

Differential Evolution (DE) is currently one of the most used population based stochastic metaheuristics. Its
popularity is mainly due to its simplicity and effectiveness in solving various types of problems, including multi-
objective, multi-modal, dynamic and constrained optimization problems. Since R. Storn and K. Price proposed
the first DE variant [11], more than fifteen years ago, dozens of differential evolution flavors, involving changes
in the main operators, hybridization with other optimization methods, automated parameters’ tuning, (self)-
adaptation schemes, structured populations and so on, have been proposed. Excellent surveys containing current
status of research in the field of differential evolution were recently published [5], [9]. Despite the large number
of reported applications of DE and the huge volume of experimental results it is still difficult to give answers
to questions like ”How could we control the DE behavior?” or ”Why is DE successful for a class of problems
and why does it fail for other problems?”. The theoretical analysis of DE is still well behind the experimental
results, most of the current knowledge on differential evolution being based on empirical observations.

The aim of this paper is to review the existing theoretical results concerning the convergence properties of
DE and the influence of the choice of DE parameters on the population evolution, focusing on the usage of
these results in deriving practical insights for designing effective and efficient optimization tools. The paper is
structured as follows. The first section presents the overall structure of the DE algorithm and the traditional
DE mutation and crossover variants. Section 2 reviews the existing theoretical results and presents a new result
concerning the population variance evolution in the case of DE/either-or variant. In Section 3 are presented some
examples when from theoretical results one can extract suggestions for appropriate choice of DE parameters or
one can just explain some rules of thumb already used be practitioners. Section 4 concludes the paper.

2 The general structure of Differential Evolution

The overall structure of differential evolution is typical for evolutionary algorithms consisting of two main steps:
initialization and an iterative transformation of a population of candidate solutions belonging to the search space
D ⊂ R

n. Each iteration corresponds to an evolutionary generation and consists of constructing new elements
by mutation and crossover, evaluating the new elements and selecting those which are included in the next
generation. In the following we shall consider the case of single-objective minimization problems, i.e. problems
of finding x∗ ∈ D satisfying f(x∗) ≤ f(x) for all x ∈ D, where f : D ⊂ R

n → R. The population of candidate
solutions corresponding to generation g will be denoted by {x1(g), x2(g), . . . , xm(g)} and the components of a
vector xi will be denoted by (x1

i , x
2
i , . . . , x

n
i ). For each element xi from the current population it is constructed



a mutant element denoted by yi and from xi and yi is constructed by crossover a so-called trial element denoted
by zi. By using these notations the general structure of the differential evolution is described in Algorithm 1,
the particularities of a given DE instance being related with the particularities of the mutation and crossover
operators. In almost all DE implementations, the selection operator is working as follows: the trial element is
compared with the current element and the best of them is transferred in the new population.

Algorithm 1 The general structure of a generational DE

1: Population initialization X(0)← {x1(0), . . . , xm(0)}
2: g ← 0
3: Compute {f(x1(g)), . . . , f(xm(g))}
4: while 〈the stopping condition is false〉 do
5: for i = 1,m do
6: yi ← generateMutant(X(g))
7: zi ←crossover(xi(g),yi)
8: Compute f(zi)
9: if f(zi) < f(xi(g)) then

10: xi(g + 1)← zi
11: else
12: xi(g + 1)← xi(g)
13: end if
14: end for
15: g ← g + 1
16: end while

The DE variants mainly differ with respect to the variation (mutation and crossover) operators. The most
used operators are briefly described in the following.

2.1 DE/rand/D/* variant

In the classical DE/rand/1/* variant, in order to construct a mutant vector, yi, three population elements
should be randomly selected. One of these is called base vector, xr1 , and the other two (xr2 and xr3) are used
to construct a difference term to be added to the base vector (see Eq. (1)).

yi = xr1 + F · (xr2 − xr3), F ∈ (0, 2) (1)

The constant F in Eq. (1) is a scale factor which influences the diversity of the set of mutant vectors. The
indices r1, r2, r3 are usually randomly selected from {1, . . . ,m} but such they satisfy the restriction of being
distinct and different of i. The influence of this restriction on the DE behavior is analyzed in [8] where is stated
that it enables DE to achieve a good convergence. The simplest extension of the DE/rand/1/* mutation variant
is that involving several difference terms instead of just one term, as it is illustrated in Eq. (2), where r2(d)
and r3(d) denote distinct randomly selected indices. The most used variant is that corresponding to D = 2 and
F1 = F2, as using more than two differences have not proved to be beneficial in practice.

yi = xr1 +

D
∑

d=1

Fd · (xr2(d) − xr3(d)) (2)

The trial element, zi, can be obtained by mixing the elements of the mutant yi with the elements of the current
element xi. There are two main crossover variants for DE: binomial and exponential. The binomial crossover
constructs the trial vector by taking, in a random manner, elements either from the mutant vector or from the
current element, as it is described in Eq. (3).

zji =

{

yji if Uj < CR or j = k

xj
i otherwise

, j = 1, n (3)

In Eq. (3), Uj denotes a random value generated for each j in accordance to a uniform distribution over [0, 1],
CR ∈ [0, 1] is the crossover rate and k is a randomly selected index from {1, . . . , n}. The use of k ensures that at
least one component is taken from the mutant vector, even if CR is zero. The name of this crossover type comes
from the property that the number of components taken from the mutant vector has a binomial distribution
[8]. This binomial crossover is very similar to the so-called uniform crossover used in evolutionary algorithms.
The exponential crossover was designed to be similar to one point and two points crossover variants used in



genetic algorithms. The trial vector is obtained by taking from the mutant vector a sequence of consecutive
components (in a circular manner), as described in Eq. (4) where k ∈ {1, 2, . . . , n} is a random index, L is a
random value in {1, 2, . . . , n} such that Prob(L = h) = (1 − CR)CRh−1 if h < n and Prob(L = n) = CRn−1

[16]. In the same equation, 〈j〉n denotes j if j ≤ n and j − n if j > n.

zji =

{

yji if j ∈ {k, 〈k + 1〉n, . . . 〈k + L− 1〉n}

xj
i otherwise

, j = 1, n (4)

An obvious difference between binomial and exponential crossover is the fact that in the binomial case the
components inherited from the mutant vector are arbitrarily selected, while in the case of exponential crossover
they form one or two compact subsequences. Another significant difference concerns the relationship between the
parameter CR and the probability of taking an element from the mutant vector (i.e. the mutation probability,
pm) which is linear for the binomial variant and nonlinear for the exponential crossover [16].

2.2 DE/*best/1/* variant

Other common DE variants are those based on changing the randomly selected base vector with linear combi-
nations involving the best element (x∗) and/or the target element (xi) from the current population. Some of
the most popular variants are DE/rand-to-best/1/* (eq. (5)) and DE/current-to-best/1/* (eq. (6)).

yi = λx∗ + (1− λ)xr1 + F · (xr2 − xr3) (5)

yi = λx∗ + (1− λ)xi + F · (xr1 − xr2) (6)

In all cases λ ∈ (0, 1) controls the influence of the best or of the current element on the base vector. The trial
element, zi, is obtained by using one of the previously described crossover variants.

2.3 DE/current-to-rand/1 variant

This variant constructs the trial element by using an arithmetic recombination between the target element (xi)
and a mutant element generated using a DE/rand/1 mutation (eq. (7)). The parameter q ∈ (0, 1) controls
the relative influence of the target and mutant elements, respectively, playing a role similar to that of CR in
binomial and exponential crossover.

zi = qxi + (1− q)xr1 + F · (xr2 − xr3) (7)

2.4 DE/either-or variant

Both binomial and exponential crossover variants have as main disadvantage the fact that they are not ro-
tationally invariant processes making differential evolution less effective for rotated functions. On the other
hand, completely eliminating the crossover leads to a poor behavior of DE for multimodal problems. In order
to solve this problem, in [8] it is proposed to replace the crossover operator with another way of recombining
the population elements, similar to arithmetic recombination, obtaining the so-called DE/either-or variant (eq.
(8)). F and K are scaling factors. Some comments on the choice of K are presented later in the paper.

zi =

{

xr1 + F · (xr2 − xr3) with probability pF
xr1 +K · (xr2 − xr1) +K · (xr3 − xr1) with probability 1− pF

(8)

3 Theoretical analysis of Differential Evolution

The theoretical results concerning DE behavior are still significantly fewer than the reported experimental
studies and real-world applications. One possible explanation is the fact that the theory developed for evolution
strategies involving perturbations based on given probability distribution functions (e.g. normal distribution)
cannot be directly applied in the case of DE. More specifically, the typical condition of ergodicity of the mutation
operator which (together with the elitism of the selection operator) is sufficient to prove the convergence of
most of evolution strategies [10] is not necessarily satisfied by the standard DE variants, which do not involve a
mutation based on a random variable with probability distribution having an unbounded support. If the scale
factor, F , is replaced with a random variable having a normal distribution [14] or if a stochastic term sampled
from a distribution with unbounded support is added to the mutant term as in [3], then the sufficient conditions
for stochastic convergence are satisfied. In the general case, proving the convergence of DE is not obvious, since



the usage of sampled differences make the study of the DE dynamics more difficult. However, in the last years
several important results concerning the distribution of the DE populations, convergence and stability were
obtained, even if some of them are under restrictive assumptions [1], [6], [7], [13], [14].

All these results were obtained at a component level, i.e. the population elements have just one component
(n = 1). This is a natural consequence of the fact that the DE operators act independently on the components
of population elements. In the following we shortly review these results, emphasizing, when it is possible, their
practical implications.

3.1 Distribution of the trial population and stability results

A first analysis of the distribution of the trial population is presented in [13] for a DE/current-to-best/D

variant (yi = λx∗ + (1− λ)xi + F ·
∑D

d=1(xr1(d) − xr2(d))) used in the context of multi-objective optimization.
The analysis is conducted under the assumption that the initial population has a normal distribution with
identity as covariance matrix. The specific properties of DE/current-to-best/D mutation ensure that the normal
distribution is conserved also for the population of trial vectors. By analyzing the evolution of the population
mean and of the covariance matrix, the authors of [13] extracted two main practical guidelines in choosing the
parameters: (i) 2DF 2+(1−λ)2 should be larger than one, in order to ensure a proper exploration of the search
space; (ii) the greediness coefficient λ ∈ [0, 1] should be relatively large, in order to improve the convergence
behavior.

A detailed analysis of the probability distribution of the population of mutant vectors obtained by DE/rand/1
variant was conducted in [1] under the more plausible assumption of an uniform distribution of the initial
population. Even if the uniformity of the distribution is not conserved during the intermediate stages of the
evolution, the distribution of the population in the last stage of the evolution can be approximated with a uniform
distribution in a neighborhood of the global optimum. Based on this assumption, Alli and Fatti succeeded to
derive the probability density functions for the mutant vectors and to propose a computationally tractable
variant of directly sampling mutants (without using explicit differences), based on an approximation involving a
beta distribution. The main practical implications of the variant which does not use explicit differences variant
(fde) proposed in [1] are: (i) it does not generate mutants outside the search domain; (ii) it does not use a scale
factor, F (however it uses another parameter to estimate the parameters of the beta distribution). Despite
these advantages, the fde variant is less used in practice, mainly because its implementation is not so simple as
that of classical DE variants.

In [6] is proposed a simple mathematical model for the dynamics of a DE/rand/1/bin population of scalar
elements assuming that the objective function is sufficiently smooth and uni-modal in the analyzed region.
By using the Lyapunov function method, it is proved that the DE dynamics is stable and with no oscillatory
behaviour once that the neighborhood of the optimum has been reached. The main findings are: (i) the DE
dynamics is similar with a gradient descent strategy with a descent step value influenced by CR and F ; (ii) in
the final stage of the evolution, the convergence rate is mainly determined by CR.

The most recent and comprehensive analysis of the evolution of the probability distribution function (PDF)
corresponding to DE/rand/1/* populations is presented in [7]. The authors of [7] derived a recurrence relating
the PDF corresponding to the current generation to the PDF corresponding to the previous generation. More-
over they have proven that in the case of an objective function with an unique global optimum (but without
restrictions on the number of local optima) the PDF converges to a Dirac distribution function concentrated in
the global optimum. Therefore, this Dirac function is the equilibrium state of the dynamical system associated
to the PDF recurrence relation. In the same paper it is also proved, by identifying a Lyapunov function, that
the equilibrium distribution is asymptotically stable. The main practical insight, illustrated in the case of one-
dimensional objective functions is: the convergence time (related to the settling time of the Lyapunov function)
decreases as CR increases and has a fluctuating, but with an increasing trend, evolution when F increases.

3.2 Influence of the DE parameters on the variance of the trial population

One of the DE particularities is that the population diversity is crucial in avoiding premature convergence and
in ensuring the exploration of the search space. This particularity motivated the interest on analyzing the
influence of the variation operators and of their parameters on the population variance. Such an analysis for
DE was presented in [14] for DE/rand/D/bin and later extended for DE/best-to-rand/D/* and DE/current-
to-rand/1 in [15]. The starting idea in computing the component-based expected variance, E(V ar(Z)), of
the trial population, {z1, z2, . . . , zm} is based on Beyer’s approach [2] of analyzing the explorative power of
evolution strategies in the absence of selection (i.e. for flat objective functions). For all analyzed DE variants
the expected variance of the trial population depends linearly on the variance of the current population and
the coefficient(s) of this dependence is(are) determined by the parameters of the DE variant. The free term of



the linear dependence is zero (i.e. E(V ar(Z)) = c · V ar(X)), except for variants involving the currently best
element.

In the simplest case (DE/rand/1/*), the dependence described by Eqs. (9) and (10) involves in an interre-
lated manner all parameters (m, F , CR and n) suggesting that each of these parameters has an influence on
the diversity of the population of trial elements.

E(V ar(Z)) =

(

1 + 2pmF 2 −
pm(2− pm)

m

)

V ar(X) (9)

In Eq. (9) the value of the mutation probability, pm, depends on the crossover rate parameter, CR, as follows
[16]:

pm =







CR(1− 1/n) + 1/n for binomial crossover

1−CRn

n(1−CR) for exponential crossover
(10)

When the currently best element is used (e.g. DE/rand-to-best/*) then the dependence of E(V ar(Z)) on
V ar(X) (see Eq. (11)) involves a free term expressing how far the elements of the current population are spread
around the best element [15]. If x∗ is close to the population mean then one obtains again a simple linear
dependence based on a coefficient involving the parameters: λ, m, F , CR and n. In Eq.(11) pm depends on
CR and n according to eq. (10).

E(V ar(Z)) =

(

1 + 2pmF 2 −
pm(2− pm)

m
− λp2m

m− 1

m

)

E(V ar(X)) + λ2pm(1− pm)
1

m

m
∑

i=1

(x∗ − xi)
2 (11)

In the case of the usage of arithmetic recombination, the relationship between E(V ar(Z)) and V ar(X) is
rather simple (Eq. (12)) and the multiplicative factor involves only the parameters m, F , q, being independent
of the problem size [15].

E(V ar(Z)) =

(

1 + 2F 2 − 2(1− q) +
2m− 1

m
(1− q)2

)

V ar(X) (12)

The most complicated expression arises in the case of DE/either-or variant (Eq. (13)) where the multiplica-
tive coefficient depends on m, F , K and pF , being again independent of the problem size. This is a new result,
as the behaviour of the DE/either-or population variance has not been analyzed before. A sketch of the proof
of Eq. (13) is presented in the Appendix.

E(V ar(Y )) =
(

p2F (1 + 2F 2 − 1
m
) + 2pF (1− pF )(

m−1
m

+ F 2 + 3K2 − 2K)

+(1− pF )
2
(

m−1
m

+ 2m−2
m

(3K2 − 2K)
))

V ar(X)
(13)

All these results, providing explicit relationships between the DE control parameters and the evolution of the
population variance (in the absence of selection) can be used to derive values for the DE parameters which
induces a desired evolution of the population variance (e.g. avoid premature convergence).

4 From DE theory to practical insights

Theoretical results are valuable for practitioners as long as they can lead to rules to be applied in practice. In
this section we will see how can we use some of the theoretical results presented in the previous section in order
to explain some empirical rules concerning the choice of DE parameters and also to infer some other practical
remarks.

4.1 Avoiding premature convergence

The main cause of DE premature convergence is the lost of population diversity, thus ensuring that the variance
of the population does not decrease in the absence of selective pressure is a key element in avoiding premature
convergence. Except for DE/best/* variants, the trial population variance can be controlled by choosing pa-
rameters’ values which ensure that the coefficient c (in E(V ar(Z)) = c ·V ar(X)) is never smaller than 1. Since
the scale factor, F , is usually related to the diversity of the trial elements, one can find lower bounds for F
under which the population variance decreases even in the absence of the selective pressure. Such lower bounds
can be computed in the case of DE/rand/1/*, DE/current-to-rand and DE/either-or by solving the equations
c(m,F,CR, n) = 1, c(m,F, q) = 1 and c(m,F,K, pF ) = 1, respectively. Figure 1 illustrates the influence of the



population size (m) and of the crossover parameter (CR for DE/rand/1/*, q for DE/current-to-rand and pF
for DE/either-or) on the lower bound, Flow. In the case of DE/rand/1/* variants the increase of population
size significantly decreases the value of Flow, meaning that for large enough populations (e.g. m ≥ 100) the
variance does not decrease in the absence of selective pressure, unless for small values of F (e.g. F < 0.1).
In the case of DE/current-to-rand and DE/either-or the increase of population size does not ensure (unless
the crossover parameters, q and pF , are large) the decrease of Flow (see Figure 1). On the other hand, for
DE/rand/1/* and DE/either-or the lower bound Flow decreases as the crossover parameter increases while in
the case of DE/current-to-rand the dependence of Flow on q is nonmonotonous (with a maximal value for Flow

when q = 0.5). From a practical point of view the knowledge of Flow is more important in the case of small
populations. A succesfull practical usage of the lower bound Flow has been reported in [4] in the context of
dynamic optimization. Figure 2 presents a comparative image of the influence of the control parameters on
the trial population variance suggesting that DE/rand/1/* variants are less sensitive to the value of the scale
factor, F , than DE/current-to-rand and DE/either-or.

m=10

m=20

m=30

m=100

m=500

DE/rand/1/bin

0.0 0.2 0.4 0.6 0.8 1.0
CR0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Flow

m=10

m=20

m=30

m=100

m=500

DE/rand/1/exp

0.0 0.2 0.4 0.6 0.8 1.0
CR0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Flow

m=10

m=500

DE/current-to-rand

0.0 0.2 0.4 0.6 0.8 1.0
q0.0

0.1

0.2

0.3

0.4

0.5

0.6
Flow

m=10

m=20

m=100

m=500

DE/either-or

0.0 0.2 0.4 0.6 0.8 1.0
pF0.0

0.1

0.2

0.3

0.4
Flow

Figure 1: Influence of the population size (m) and of the crossover parameter (CR, q, pF ) on the lower bound
for F .
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Figure 2: Comparison between DE variants (pm = q = pF = 0.5): dependence of the multiplicative coefficient
of the trial population variance on F (left); dependence of the lower bound for F on m (right).



4.2 Choosing values for the crossover rate

In the case of DE/rand/*/* variants, the crossover rate (CR) controls the number of components taken from
the mutant vector but it is not identical to the mutation probability (pm). It is obvious that the DE behaviour
is influenced by pm but we can control it only through CR (based on the Eq. 10). Therefore it is important to
know which value should have CR in order to obtain a desired value for pm ∈ [1/n, 1]. In the case of binomial
crossover, CR can be easily computed from pm since CR = (pm − 1/n)/(1 − 1/n). In the case of exponential
crossover one have to solve a polynomial equation (CRn − npmCR+ npm − 1 = 0). This approach was used in
[12] in order to design adaptive DE involving a selection between binomial and exponential crossover. Another
practical issue is related to the influence of the problem size on the choice of appropriate CR. While the
binomial crossover is only slightly influenced by the problem size, the exponential crossover is more sensitive to
the problem size. For high-dimensional problems the range of values for CR for which pm is significant is very
narrow, therefore in the case of exponential crossover it could be difficult to identify appropriate CR values.
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Figure 3: The relationship between CR and pm (for n ∈ {10, 30, 50, 100, 500}) for binomial crossover (left) and
exponential crossover (right).

4.3 DE empirical rules vs. theoretical results

In the DE field it is common to extract from numerical experiments some empirical knowledge on the algorithm
behaviour, leading to rules used in implementations. It would be ideal if such empirical rules would be in
accordance with some theoretical results. One such situation is presented in [16] where the theoretical results
on exponential crossover explains why appropriate values for CR should be in the range [0.9, 1].

Here we present another situation where an empirically induced rule has some theoretical explanation behind.
In the case of DE/either-or variant it is stated in [8] that ”From experience K = 0.5·(F+1) can be recommended
as a good first choice for K given F.”. A natural question is if such a choice of K has some particular properties.
Well, if we look to Figure 4 (left) we can see that for F = 0.8 and K = 0.9 the coefficient c(m,F,K, pF )
involved in the variance relationship (eq. (13)) has almost the same value for all values of pF . Same behaviour
can be remarked for F = 0.5 and K = 0.75, for F = 0.6 and K = 0.8 and so on. In fact, by solving
the equation c(m,F,K, pF ) = c(m,F,K, p′F ) with respect to K for some given values for m, pF , p

′

F and for
F ∈ {0.1, 0.2, . . . , 2} we obtained values for K corresponding to the points marked in Figure 4 (right) which are
close to the line corresponding to the dependence K = (F +1)/2. Therefore, we can say that for K = (F +1)/2
the variance of the trial population is not significantly influenced by pF . Thus, in this case DE/either-or could
be less sensitive to pF , therefore being easier to choose an appropriate value for it.

5 Conclusions

Despite the fact that the DE theory is still behind the numerical studies there are some encouraging results.
Moreover most of these results provide rules in choosing the DE parameters which allow to control the algorithm
behavior. On the other hand, most of these results were obtained for panmictic populations involving classical
mutation and crossover operators. There are a lot of DE variants for which the theoretical analysis is still an
open issue (e.g. DE with structured populations, neighborhood based selection of parents, opposition-based
DE, binary differential evolution etc).
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Appendix: Sketch of the proof for Eq. (13) In order to simplify the notations let us denote by Ii, Ji
and Ki the random variables with uniform distribution on {1, 2, . . . ,m} used to sample the indices r1, r2 and
r3 involved in the description of the DE/either-or variant (see Eq. (8)). Therefore the equation describing the
dependence of the random variable corresponding to the trial element, Zi, on the elements from the current
population can be rewritten as in Eq. (14).

Zi =

{

Vi = xIi + F · (xJi
− xKi

) with probability pF
Wi = xIi +K · (xJi

+ xKi
− 2xIi) with probability 1− pF

(14)

If we denote with 1Mi
the mutation event (the event of taking Vi) then the random variable Zi can be written

as
Zi = Vi · 1Mi

+Wi · 1Mi
. (15)

Our aim is to compute the expected variance of the trial population, i.e. E(V ar(Z)). Since

V ar(Z) =
1

m2

∑

i<j

(Zi − Zj)
2 (16)

and the distribution of (Z1, Z2, . . . , Zm) is the same as the distribution of any permutation, (Zπ(1), Zπ(2), . . . , Zπ(m)),
of the population (π being a permutation of {1, 2, . . . ,m}) it follows that:

E[V ar(Z)] =
m− 1

2m
E[(Zi − Zj)

2] (17)

i and j being two arbitrary but distinct indices. Using Eq. (15) and the fact that Prob(1Mi
) = pF and

Prob(1Mi
) = 1− pF it follows that:

E[V ar(Z)] =
m− 1

2m

(

p2FE[(Vi − Vj)
2] + 2pF (1− pF )E[(Vi −Wj)

2] + (1− pF )
2E[(Wi −Wj)

2]
)

. (18)

The first term of the sum appearing in the right hand part of Eq. (18) is also involved in the DE/rand/1
mutation (without crossover), thus according to results in [15] it satisfies:

E[(Vi − Vj)
2] =

2m

m− 1
(1 + 2F 2 − 1/m)E[V ar(X)]. (19)

Let us analyze the second term:

E[(Vi −Wj)
2] = E[((xIi − xIj ) + F · (xJi

− xKi
)−K · (xJj

+ xKj
− 2xIj ))

2]

= E[(xIi − xIj )
2] + F 2 · E[(xJi

− xKi
)2] +K2 · E[(xJj

+ xKj
− 2xIj )

2]

+2F · E[(xIi − xIj ) · (xJi
− xKi

)]− 2K · E[(xIi − xIj ) · (xJj
+ xKj

− 2xIj )]

−2K · F · E[(xJi
− xKi

) · (xJj
+ xKj

− 2xIj )]

(20)

In order to conduct all computations involved in Eq. (20) the following identities will be used (for I and J
random variables over {1, 2, . . . ,m}):

E(xI − xJ) = 0 E[(xI − xJ)
2] = 2E[V ar(X)] (if I and J can take the same values)

E[(xI − xJ)
2] = 2m

m−1E[V ar(X)] (if I and J take always distinct values)
(21)

Since Ii and Ij are independent they can take the same values, while according to DE rule, Ji and Ki should
always take distinct values. Therefore one obtains:

E[(xIi − xIj )
2] = 2E[V ar(X)] and E[(xJi

− xKi
)2] =

2m

m− 1
E[V ar(X)] (22)

On the other hand, using the independence between the set of random variables {Ii, Ji, Ki} and the set {Ij ,
Jj , Kj}, it follows:

E[(xIi − xIj )(xJi
− xKi

)] = 0 and E[(xJi
− xKi

)(xJj
+ xKj

− 2xIj )] = 0 (23)



On the other hand, the third term in Eq. (20) can be written as follows:

E[(xJj
+ xKj

− 2xIj )
2] = E[(xJj

− xIj )
2] + E[(xKj

− xIj )
2] + 2E[(xJj

− xIj )(xKj
− xIj )]

= 4m
m−1E[V ar(X)] + 2E[xJj

(xKj
− xIj )]− 2E[xIj · xKj

− x2
Ij
]

= 4m
m−1E[V ar(X)] + 2m

m−1E[V ar(X)] = 6m
m−1E[V ar(X)]

(24)

The last computations in the above equation are based on the following (easy to check) equalities: E[xJj
(xKj

−
xIj )] = 0 and E[xIj ·xKj

−x2
Ij
] = −m/(m−1) ·E[V ar(X)]. On the other hand, since Ii and Ij are independent

random variables it follows that E[(xIi − xIj )(xJi
+ xKj

− 2xIj )] = −2m/(m − 1) · E[V ar(X)]. By adding all
these terms one obtains:

E[(Vi −Wj)
2] =

(

2 +
2m

m− 1
F 2 +

6m

m− 1
K2 −

4m

m− 1
K

)

E[V ar(X)] (25)

The last term in Eq. (18) is:

E[(Wi −Wj)
2] = E[((1− 2K)(xIi − xIj ) +K · (xJi

− xJj
) +K · (xKi

− xKj
))2]

= (1− 2K)2 · E[(xIi − xIj )
2] +K2 · E[(xJi

− xJj
)2] +K2 · E[(xKi

− xKj
)2]

+2K(1− 2K) · E[(xIi − xIj ) · (xJi
− xJj

)] + 2K(1− 2K) · E[(xIi − xIj ) · (xKi
− xKj

)]

+2K2 · E[(xJi
− xJj

) · (xKi
− xKj

)]
(26)

Since the pairs (Ii, Ij),(Ji, Jj) and (Ki,Kj) contain independent random variables it follows that:

E[(xIi − xIj )
2] = E[(xJi

− xJj
)2] = E[(xKi

− xKj
)2] = 2E[V ar(X)] (27)

and

E[(xIi − xIj )(xJi
− xJj

)] = E[(xIi − xIj )(xKi
− xKj

)] = E[(xJi
− xJj

)(xKi
− xKj

)] =
2

m− 1
E[V ar(X)] (28)

Thus by adding all terms in Eq. (26) it follows:

E[(Wi −Wj)
2] =

((

4−
4

m− 1

)

(3K2 − 2K) + 2

)

E(V ar(X)) (29)

Using Eqs. (19),(20) and (26) in Eq. (18) it follows Eq. (13). Figure 5 illustrates the similarities between the
theoretical evolution of the trial population variance (in the absence of selection pressure) and the empirically
estimated variance. Also the theoretical critical value F = 0.274 is close to the empirically estimated one.
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Figure 5: The evolution of the trial population variance (in the absence of selection) for DE/either-or (m = 50,
K = (F + 1)/2, pF = 0.5): theoretical evolution (left) and empirical plus theoretical evolution (right).


