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Abstract. This paper presents a hierarchical and easy configurable
framework for the implementation of distributed evolutionary algorithms
for multiobjective optimization problems. The proposed approach is
based on a layered structure corresponding to different execution environ-
ments like single computers, computing clusters and grid infrastructures.
Two case studies, one based on a classical test suite in multiobjective op-
timization and one based on a data mining task, are presented and the
results obtained both on a local cluster of computers and in a grid en-
vironment illustrates the characteristics of the proposed implementation
framework.

1 Introduction

Evolutionary algorithms proved to be adequate metaheuristics in solving multi-
objective optimization problems. However, for complex problems characterized
by a large number of decision variables and/or objective functions they need
large populations and a lot of iterations in order to obtain a good approximation
of the Pareto optimal set. In order to solve this problem, different variants for
parallelizing and distributing multiobjective evolutionary algorithms (MOEAs)
have been proposed in the last years [3,4,7]. Choosing the appropriate variant
for a particular problem is a difficult task, thus simultaneously applying different
variants and combining their results could be beneficial. The huge computational
power offered today by grid infrastructures allows the use of such strategies which
could be beneficial especially when the human knowledge on the problem to be
solved or on the method to be applied is lacunar.

The approach proposed in this paper is developed in order to be used either
on a cluster or in a grid environment and is based on the idea of using one or
several colonies of populations. Each colony consists of a set of populations and
can be characterized by its own strategies for assigning a search subspace to
each population and for ensuring the communication between populations. The
results obtained by all colonies are to be collected and combined in order to
obtain the global approximation of the Pareto optimal set and/or Pareto front.
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The paper is organized as follows. Section 2 presents a brief overview of exist-
ing distributed variants of MOEAs. The hierarchical approach and the particu-
larities of the cluster and grid layers are presented in Section 3. In Section 4 two
case studies are presented, one involving a classical test suite in MOEAs analy-
sis, and the other one related to a data mining task, the problem of attributes’
selection.

2 Distributed Versions of Multiobjective Evolutionary
Algorithms

Most evolutionary algorithms for multi-objective optimization use a population
of elements which are transformed by recombination and mutation during a given
number of generations. At each generation all objective functions are evaluated
for all elements of the population and the non-dominance relationship between
them is analyzed. In the case of a minimization problem involving r objective
functions, f1,...,fr an element x ∈ D ⊂ Rn is considered non-dominated if there
does not exist another element y ∈ D such that fi(y) ≤ fi(x) for all i ∈ {1, ..., r}
and the inequality is strict for at least one function. The non-dominated elements
of the population represent an approximation of the Pareto optimal set. Both
the evaluation of elements and the analysis of the nondominance relationship
are high cost operations. These costs can be reduced by dividing the population
in subpopulations and by evolving them in parallel. In order to design such a
distributed variant of a MOEA some key issues should be addressed: the divi-
sion of the search space, the communication between subpopulations and the
combination of the results obtained by all subpopulations.

The division of the search space can be made before starting the evolution
(apriori division rule) or dynamically during the evolution (dynamic division
rule). In the last years different strategies have been proposed, most of them
being based on dynamic division rules [4,7]. Dynamic division rules usually in-
volve some operations aiming to periodically reorganize the structure of the
search space. In some cases this operations could be costly by themselves, as for
instance in [7], where a clustering step involving the elements of all subpopu-
lations is executed, or in [4], where all subpopulations are gathered and their
elements are sorted. On the other hand, applying apriori division rules (e.g. di-
viding the decision variables space in disjoint or overlapping regions) does not
usually involve supplementary costs.

The communication between subpopulations plays a critical role in the behav-
ior of a distributed MOEA. The main components of a communication process
are: the communication topology, the communication policy and the communica-
tion parameters. The communication topology defines the relationship between
subpopulations and the most common variants are: fully connected topology
(each subpopulation is allowed to communicate with any other subpopulation)
and neighborhood based topologies like the ring topology (a subpopulation Si

can communicate only with subpopulations Si−1 and Si+1, in a circular manner).
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The communication policy refers to the manner the migrants are selected from
the source subpopulation and the way they are assimilated into the destination
subpopulation. The migrants can be randomly selected from the entire popula-
tion or just from the non-dominated subset (elitist selection). The assimilation
of the migrants can be realized by just replacing an element of the target sub-
population with the immigrant (the so-called pollination [3]) or by sending back
an element to the source subpopulation in order to replace the emigrant (plain
migration [9]). The communication topologies and policies can be combined in
different manners leading to a large number of strategies.

The parameters influencing the behavior of the distributed variant are: the
communication frequency (number of generations between consecutive migration
steps) and the migration probability (the probability of an element to be selected
for migration).

Besides the large number of parallel implementations of MOEAs, grid im-
plementations have been also recently reported. In [6] is proposed a Globus
based implementation of a Pareto archived evolution strategy characterized by
remotely executing a number of sequential algorithms on different grid machines
and storing the approximated fronts which satisfy some quality criteria. In [5] is
presented a grid-enabled framework which allows the design and deployment of
parallel hybrid meta-heuristic, including evolutionary algorithms.

3 The Hierarchical Approach

The existence of different MOEAs distribution strategies on one hand and of
different architectures on which such algorithms can be executed, on the other
hand, motivated us to search for an easy configurable framework for the exe-
cution of distributed MOEAs. The approach we propose is based on a layered
structure, as illustrated in Figure 1, allowing the execution either on a single
computer, on a cluster of computers or in a grid infrastructure.

Collecting the results

Colony 1 Colony 3
Colony 2

Independent colonies

GRID layer

S1

S3

S4

One unstructered/ structured population

S2

Sequential algorithm

P1 P2

P3

Colony of communicating populations

CLUSTER layer

Fig. 1. The layered structure corresponding to the hierarchical approach
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The first layer corresponds to the evolution of either a single unstructured
population which explores the entire decision space or to a structured popula-
tion consisting of communicating subpopulations. From an implementation point
of view this would correspond to a sequential implementation on one processor.
Using a structured population could be beneficial by increasing the population
diversity and reducing the cost of the selection step even in the case of a sequen-
tial implementation.

The second layer corresponds to a colony of populations which evolve inde-
pendently but which periodically change some information during a migration
step. From an implementation point of view this layer would correspond to a
parallel variant executed on a cluster of computers (each processor deals with
the evolution of one or several populations from the colony).

The third layer corresponds to the evolution of several independent colonies
of populations each one being executed in a location of the grid environment.
Unlike the populations in a colony, the colonies are loosely coupled in order to
deal with the heterogeneous character of the grid infrastructure. In the current
implementation the only communication between the colonies is in the end of the
evolution process where the results are collected from all of them. Since the same
problem is solved on each colony this induce a certain level of redundancy. In
order to reduce the redundancy, each colony can be based on a different MOEA
and on different distribution strategies.

The cost of communication between (sub)populations is highly dependent on
the layer, thus the communication strategy should be adequately chosen for each
layer. There are two main communication processes involved: a periodical com-
munication corresponding to migration stages and a final communication step
corresponding to the collection of the partial results obtained by all processes.

Since the aim of the final communication step is just to collect the results,
a natural way to implement it is: all processes send their results to a master
process which collect them and construct the final result. These partial results
are sets of non-dominated elements having almost the same number of elements
as the population. If the final results produced by p populations of size m are
collected through a message passing interface, the cost of this communication
is O(pmL), L being the size of each element (which depends on the number of
decision variables and objective functions).

In the first layer an intensive periodical communication between subpopula-
tions can be applied, including strategies based on gathering and redistributing
the entire population. If the evolution of a colony of populations is executed in
parallel on a cluster of computers there could be different approaches in imple-
menting the periodical communication when using a message passing interface.
Let us consider the case of a colony consisting of p populations. For instance, in
the case of random pollination (each population sends some elements to other
randomly selected populations), a direct implementation strategy could lead to a
number of messages of O(p2) to be transferred between p processes. In the case of
plain migration, when for each immigrant a replacing element is sent back to the
source population the number of messages is twice as in the case of pollination.
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The number of messages can be significantly reduced (O(p)) if all processes send
their migrants to a master process which distribute them to the target processes.
If each message containing migrants is preceded by a short message containing
their number, the total number of messages is at most 4(p − 1). The number
of messages transmitted between processors is even smaller in the case of ring
topologies (2p). The length of messages containing migrants depends on the size
of each element, L, on the population size, m, and on the migration probability,
pm. The averaged length of the messages containing migrants is mpmL(p−1)/p.

For the grid layer at least two scenarios can be identified: (i) in each grid
location a sequential job corresponding to one colony is executed; (ii) a parallel
job involving a message passing interface in the grid infrastructure is executed.
In the first case there is no direct communication between colonies, the jobs
launched in the grid environment are independently executed (as in [6]) and
they send their results through files transfer to the location which initiated the
jobs. In the second case low frequency periodical migration should be applied
between colonies in order to limit the communication between different sites.

4 Experimental Results and Discussion

The experiments were conducted for the first from the above mentioned scenarios
and the behavior of the proposed approach was tested in two distinct contexts:
(i) one problem — several strategies; (ii) one strategy — multiple subproblems
(e.g. data subsets).

4.1 Case Studies

In the first case we used the test suite from [10], characterized by two objective
functions, and we applied different MOEAs (e.g. Nondominated Sorting Genetic
Algorithm [1] and Pareto Differential Evolution [9]) with different parameters
and distribution strategies for different colonies. Both algorithms use similar
selection operators based on computing non-domination ranks and crowding
factors.

The second case study is related to the problem of attributes subset selection
which consists in identifying, starting from a training set, the most relevant at-
tributes. Such a problem can be solved by assigning to attributes some weights
which optimize three criteria [8]: intra-class distance (to be minimized), inter-
class distance (to be maximized) and an attribute-class correlation measure (to
be maximized). Interpreting this optimization problem as a multiobjective one,
the result will be a set of attributes weights, each one leading to a ranking of at-
tributes, where the first attributes are the most relevant ones. The final ranking
can be obtained by averaging the rankings corresponding to all elements of the
approximated Pareto set. Since the estimation of the attribute-class correlation
measure is quadratic with respect to the number of elements in the training set,
the evaluation of each element of the population is costly. A natural approach is
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to split, by using a proportional sampling strategy, the data set in smaller sub-
sets, and to apply a MOEA independently for each subset. The results obtained
for all subsets are combined in order to construct the final ranking.

4.2 Results in a Cluster Environment

The tests corresponding to the cluster layer were based on a parallel imple-
mentation using mpiJava and were conducted on a local heterogeneous cluster
of 8 nodes (Intel P4, 6 CPUs at 3.0 GHz and 2 CPUs at 2.4 GHz) connected
through optical fiber and a Myricom switch at 2 Gb/s. The evolutionary process
involved a colony of c populations to be executed on p processors. Since c ≥ p
each processor deals with a subcolony of c/p populations. Therefore, different
communication strategies can be applied between the populations in the sub-
colony assigned to one processor and between populations assigned to different
processors. Figure 2 illustrates the influence of the communication strategy and
that of the problem complexity on the speedup ratio in two cases: when the time
needed for collecting the results is ignored and when this final communication
time is taken into account. The reported results were obtained in the case of 24
populations each one having 20 elements which evolve for 250 generations by
using a NSGA-II algorithm [1] and communicate every 25 generations. It follows
that for simple test problems (e.g. ZDT2 from [10] with n = 100) the cost of the
final communication step (involving long messages) is significant with respect to
the cost of other steps, leading to low speedup ratios, while for real problems
(e.g. attribute selection in the case of a set of real medical data consisting of
177 instances, each one with n = 14 attributes) the final communication cost
does not significantly alter the speedup ratio. The decrease in the speedup ratio
when 8 processors were used is generated by the heterogeneous character of the
processors.
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Fig. 2. Speedup ratios when the final communication time is ignored (left) and when
the final communication time is taken into consideration (right)
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4.3 Results in a Grid Environment

The experiments concerning the grid layer were conducted on the European
SEE-GRID infrastructure by using up to 24 nodes with Intel P4 at 3.0 GHz, 1
GB RAM and 100 GB HDD. The tests consisted in launching several sequential
and parallel jobs corresponding to different instances of MOEAs. The code was
ported on remote sites using gLite. Each MOEA instance is described in a user
configuration file specified in the job description. The results generated by dif-
ferent jobs at different sites are transferred through files back to the site which
launched the jobs.

The first case study involved 24 sequential jobs corresponding to 24 variants
based on two MOEAs, four communication strategies, four variants of search
space division and some different values of the specific parameters. All Pareto
fronts were compared by using the coverage ratio measure [2] which allows iden-
tifying the best result (in our example it was the NSGA-II with one population
of 200 elements and a recombination probability of 0.9; the worst behavior corre-
sponds to the same strategy but for a recombination probability of 0.2). Besides
the tests involving sequential jobs, experiments with parallel codes executed on
clusters from the SEE-GRID virtual organization were also conducted. The pos-
sibility of using a larger number of processors than that in the local cluster (e.g.
24 instead of 8) led to a significant decrease of the running time of the evolu-
tionary process. This simple case study illustrates the opportunity offered by
the computational grid to efficiently conduct experimental designs when we are
looking for appropriate strategies for a given problem.

The second case study was related to the attribute selection problem and
involved a set of 2000 synthetic data corresponding to two classes and having
10 attributes. First attribute is just the class label, the next five attributes are
randomly generated starting from different distributions for the two classes (e.g.
random values generated according to the normal distribution with different pa-
rameters for the two classes) and the last four attributes are randomly generated
from the same distribution for both classes. Thus a correct ranking would be:
first attribute, attributes 2–6, attributes 7–10. Three variants were analyzed: the
data were uniformly split in 5, 10 and 20 subsets leading to 5,10 and 20 jobs,
respectively. The rankings obtained are: (1,3,5,6,2,4,7,8,9,10) in the case of 5
subsets, (1,6,3,5,2,4,8,7,9,10) in the case of 10 subsets and (1,3,6,5,4,2,7,8,9,10)
in the case of 20 subsets. All results are in concordance with the generated
data. Concerning the quality of the obtained Pareto front the best results were

Table 1. Coverage ratios (CS) corresponding to Pareto fronts for the data set split in
5,10 and 20 subsets and the corresponding average running time of executing the jobs
in the grid environment

CS 5 jobs 10 jobs 20 jobs Average time (s)

5 jobs 0.0 0.0322 0.002 4485.15± 64.77
10 jobs 0.563 0.0 0.031 1041.95± 194.42
20 jobs 0.912 0.764 0.0 374.71± 70.12
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obtained by the variant using 20 subsets. This is illustrated by the coverage ratio
measures presented in Table 1(CS(F1, F2) denotes the ratio of the elements in
F2 which are dominated by elements in F1) .

5 Conclusions

The hierarchical approach in distributing MOEAs leads to an easy configurable
framework allowing the execution either on computational clusters or in a grid
infrastructure. Two situations when the grid infrastructure can be efficiently
exploited were identified: experimental design of evolutionary algorithms when
a large set of strategies should be applied to the same problem and distributed
attributes selection for large sets of data when one method can be applied to
different data subsets.
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