
Proceedings of the International Multiconference on

Computer Science and Information Technology pp. 171–181

ISSN 1896-7094
c© 2007 PIPS

A Comparative Analysis of Crossover Variants

in Differential Evolution

Daniela Zaharie

Faculty of Mathematics and Computer Science
West University of Timişoara
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Abstract. This paper presents a comparative analysis of binomial and
exponential crossover in differential evolution. Some theoretical results
concerning the probabilities of mutating an arbitrary component and
that of mutating a given number of components are obtained for both
crossover variants. The differences between binomial and exponential
crossover are identified and the impact of these results on the choice
of control parameters and on the adaptive variants is analyzed.
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1 Introduction

Differential evolution (DE) [9] is a population based stochastic heuristic for
global optimization on continuous domains which is characterized by simplic-
ity, effectiveness and robustness.

Its main idea is to construct, at each generation, for each element of the
population a mutant vector. This mutant vector is constructed through a spe-
cific mutation operation based on adding differences between randomly selected
elements of the population to another element. For instance one of the simplest
and most used variant to construct a mutant vector, y, starting from a current
population {x1, . . . , xm} is based on the following rule: y = xr1

+ F · (xr2
− xr3

)
where r1, r2 and r3 are distinct random values selected from {1, . . . , m} and
F > 0 is a scaling factor. This difference based mutation operator is the distinc-
tive element of DE algorithms allowing a gradual exploration of the search space.
Based on the mutant vector, a trial vector is constructed through a crossover
operation which combines components from the current element and from the
mutant vector, according to a control parameter CR ∈ [0, 1]. This trial vector
competes with the corresponding element of the current population and the best
one, with respect to the objective function, is transferred into the next genera-
tion. In the following we shall consider objective functions, f : D ⊂ R

n → R, to
be minimized.

The general structure of a DE (see algorithm 1) is typical for evolutionary
algorithms, the particularities of the algorithm being related with the mutation
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and crossover operators. By combining different mutation and crossover oper-
ators various schemes have been designed. In the DE literature these schemes
are denoted by using the convention DE/a/b/c where a denotes the manner of
constructing the mutant vector, b denotes the number of differences involved in
the construction of the mutant vector and c denotes the crossover type.

Algorithm 1 The general structure of a generational DE

1: Population initialization X(0)← {x1(0), . . . , xm(0)}
2: g ← 0
3: Compute {f(x1(g)), . . . , f(xm(g))}
4: while the stopping condition is false do
5: for i = 1, m do
6: yi ← generateMutant(X(g))
7: zi ← crossover(xi(g),yi)
8: if f(zi) < f(xi(g)) then
9: xi(g + 1)← zi

10: else
11: xi(g + 1)← xi(g)
12: end if
13: end for
14: g ← g + 1
15: Compute {f(x1(g)), . . . , f(xm(g))}
16: end while

The behavior of DE is influenced both by the mutation and crossover opera-
tors and by the values of the involved parameters (e.g. F and CR). During the
last decade a lot of papers addressed the problem of finding insights concerning
the behavior of DE algorithms. Thus, parameter studies involving different sets
of test functions were conducted [4, 8, 7] and a significant number of adaptive
and self-adaptive variants have been proposed [2, 6, 10, 12]. Most of these results
were obtained based on empirical studies. Despite some theoretical analysis of
the DE behavior [1, 3, 11] the theory of DE is still behind the empirical studies.
Thus theoretical insights concerning the behavior of DE are highly desirable.

On the other hand, most of DE variants and studies are related with the
mutation operator. The larger emphasis on mutation is illustrated by the large
number of mutation variants, some of them being significantly different from
the first versions of DE (e.g. [5, 1]). The crossover operator attracted much less
attention, just two variants being currently used, the so-called binomial and ex-
ponential crossover. If the exponential crossover is that proposed in the original
work of Storn and Price [9], the binomial variant was much more used in ap-
plications. Besides statements like ”The crossover method is not so important

although Ken Price claims that binomial is never worse than exponential” [13]
or some recent experimental studies involving both binomial and exponential
variants [7] no systematic comparison between these two crossover types was
conducted.
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The aim of this paper is to analyze the similarities and differences between
binomial and exponential crossover emphasizing on their theoretical properties
and on their influence on the choice of appropriate control parameters. By such
an analysis we can hope to find insights into the behavior of DE and to find
explanations for statements like: ”if you choose binomial crossover like, CR is

usually higher than in the exponential crossover variant” [13].
The rest of the paper is structured as follows. Section 2 presents the im-

plementation details of binomial and exponential crossover variants. In section
3 some theoretical results concerning the probability of selecting a component
from the mutant vector and concerning the average number of mutated compo-
nents are derived. Based on these results, in section 4 is analyzed the influence
of crossover variants on the choice of control parameters. Section 5 concludes
the paper.

2 Crossover variants in differential evolution

The crossover operator aims to construct an offspring by mixing components
of the current element and of that generated by mutation. There are two main
crossover variants for DE: binomial (see Algorithm 2) and exponential (see Al-
gorithm 3). In the description of both algorithms irand denotes a generator
of random values uniformly distributed on a finite set, while rand simulates a
uniform random value on a continuous domain. For both crossover variants the
mixing process is controlled by a so-called crossover probability usually denoted
by CR.

In the case of binomial crossover a component of the offspring is taken with
probability CR from the mutant vector, y, and with probability 1−CR from the
current element of the population, x. The condition ”rand(0, 1) < CR or j = k”
of the if statement in Algorithm 2 ensures the fact that at least one component is
taken from the mutant vector. This type of crossover is very similar with the so-
called uniform crossover used in evolutionary algorithms. On the other hand, the
exponential crossover is similar with the two-point crossover where the first cut
point is randomly selected from {1, . . . , n} and the second point is determined
such that L consecutive components (counted in a circular manner) are taken
from the mutant vector. In their original paper [9], Storn and Price suggested
to choose L ∈ {1, . . . , n} such that Prob(L = h) = CRh. It is easy to check
that this is not a probability distribution on {1, . . . , n} but just a relationship
which suggest that the probability of mutating h components increases with the
parameter CR and decreases with the value of h, by following a power law. Such
a behavior can be obtained by different implementations. The most frequent
implementation is that described in Algorithm 3 where 〈j + 1〉n is just j + 1 if
j < n and it is 1 when j = n.

Besides the fact that the exponential crossover allows to mutate just consecu-
tive, in a circular manner, elements while binomial crossover allows any configu-
ration of mutated and non-mutated components there is also another difference
between these strategies. In the binomial case the parameter CR determines
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Algorithm 2 Binomial crossover

1: crossoverBin (x,y)
2: k← irand({1, . . . , n})
3: for j = 1, n do
4: if rand(0, 1) < CR or j = k then
5: zj ← yj

6: else
7: zj ← xj

8: end if
9: end for
10: return z

Algorithm 3 Exponential crossover

1: crossoverExp (x,y)
2: z ← x; k← irand({1, . . . , n}); j ← k; L← 0
3: repeat
4: zj ← yj; j ← 〈j + 1〉n; L← L + 1
5: until rand(0, 1) > CR or L = n
6: return z

explicitly the probability for a component to be replaced with a mutated one.
In the implementation of the exponential crossover, CR is used to decide how
many components will be mutated. However, in both situations CR influences
the probability for a component to be selected from the mutant vector. This
probability, denoted in the following by pm, is in fact similar with the muta-
tion probability in genetic algorithms and it is expected that its value has an
influence on the DE behavior.

Because of these differences between the two crossover variants one can have
different mutation probabilities and different distributions of the number of the
mutated components for the same value of CR. These aspects are analyzed in
more details in the next section.

3 A theoretical analysis

From a statistical point of view, the binomial crossover is achieved by a set of
n independent Bernoulli trials, the result of each trial being used in selecting a
component of the offspring from the mutant vector. If the constraint of having at
least one mutated component is applied, the successful event in each Bernoulli
trial is the union of two independent events, one of probability CR (event
”rand(0, 1) < CR”) and one of probability 1/n (event ”j = irand({1, . . . , n})”).
Thus the probability that a component is mutated is pm = CR(1 − 1/n) + 1/n.

The number, L, of components selected from the mutated vector has a bi-
nomial distribution with parameters n and pm. Thus the probability that h
components are mutated is Prob(L = h) = Ch

nph
m(1 − pm)n−h. Based on the
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properties of the binomial distribution it follows that the average of the number
of mutated components is E(L) = npm.

If the stopping condition of the repeat loop in the Algorithm 3 would be
just rand(0, 1) > CR then L would take values according to the geometric
distribution on {1, 2, . . .} corresponding to the parameter 1 − CR (CR being
interpreted as the success probability). In such a situation the probability that
the number of mutated components is h would be Prob(L = h) = CRh−1(1 −
CR). However in the exponential crossover the number of mutated components
is bounded by L, thus we are dealing with a truncated geometric distribution.

Thus the probability distribution of L is given by:

Prob(L = h) =

{

(1 − CR)CRh−1 if 1 ≤ h < n
CRn−1 if h = n

(1)

Using eq. 1 it follows that the average of L is E(L) = (1 − CRn)/(1 − CR).
It remains now to find the value of pm in the case of exponential crossover.
There are two random variables simulated in the implementation of exponential
crossover: the index, k, of the first mutated component and the number of mu-
tated components. An arbitrary component, j, will be mutated if d(j, k) < L,
where d(j, k) = j − k if j ≥ k and d(j, k) = n + j − k if j < k. Since k can take
any value from {1, . . . , n} with probability 1/n the probability that an arbitrary
component, j, is replaced with a component from the mutant vector is:

Prob(zj = yj) =
1

n

n
∑

k=1

Prob(d(j, k) < L) =
1

n

n−1
∑

d=0

Prob(L > d) (2)

Since Prob(L > d) = CRd it follows that

Prob(zj = yj) =
1

n

n−1
∑

d=0

CRd =
1 − CRn

n(1 − CR)
(3)

A summary of all these values corresponding to binomial and exponential
crossover is presented in Table 1.

Table 1. Summary of theoretical results

Crossover pm Prob(L = h) E(L)
type

Binomial CR(1− 1/n) + 1/n Ch
nph

m(1− pm)n−h CR(n− 1) + 1

Exponential
1− CRn

n(1− CR)



(1− CR)CRh−1 1 ≤ h < n
CRn−1 h = n

1− CRn

1−CR
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Thus both the probability that an arbitrary component is mutated and the
probability distribution of the number of mutated components are different be-
tween binomial and exponential crossover. More specifically, the dependence
between pm and CR is linear in the case of binomial crossover and nonlinear
in the exponential case. Figure 1 illustrates the fact that for the same value
of CR ∈ (0, 1) the mutation probability is smaller in the case of exponential
crossover than in the case of binomial one, the difference being more significant
if n is larger.
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Fig. 1. Influence of CR on the mutation probability (a) and on the average of the
number of mutated components for n = 30 (b) in the case of binomial crossover (dashed
line) and exponential crossover (continuous line)

4 Influence of the crossover variant on the choice of

control parameters

Since for the same value of CR the probability of mutating a component and the
average number of mutated components are different for binomial and exponen-
tial crossover it follows that the results of a parameter study conducted for one
crossover variant are not necessary true for the other one. The correspondence
between values of CR and mutation probability in binomial and exponential
crossover is presented in Table 2 for two dimensions of the problem (n = 30,
n = 100). As figure 1 also suggests, in the case of exponential crossover there
are two ranges of values for CR with different impact on the effect of crossover.
The first range, [0, CR1], is characterized by a low sensitivity of the algorithm
behavior to the value of CR while the second one [CR1, 1] characterized by a
high sensitivity. The threshold value, CR1, is higher for higher values of n. Thus,
in the case of exponential crossover, as n is higher the sensitive range of CR is
smaller (being included in [0.9, 1]). For instance when n = 100 for CR ∈ [0, 0.9]
the mutation probability, pm, varies only between 0.01 and 0.09. This means
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Table 2. Correspondence between CR and the mutation probability, pm, for binomial
and exponential crossover

n CR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.92 0.95 0.97 0.99 1

30 (bin) pm 0.03 0.13 0.23 0.32 0.42 0.52 0.61 0.71 0.81 0.90 0.92 0.95 0.97 0.99 1
30 (exp) pm 0.03 0.03 0.04 0.04 0.05 0.06 0.08 0.11 0.16 0.31 0.38 0.52 0.66 0.86 1
100 (bin) pm 0.01 0.11 0.21 0.31 0.41 0.51 0.60 0.70 0.80 0.90 0.92 0.95 0.97 0.99 1
100 (exp) pm 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.05 0.09 0.12 0.19 0.31 0.63 1

that parameters studies concerning CR should be differently conducted in the
case of binomial and exponential crossover.

In order to illustrate the influence of the crossover variant on the sensitivity
of DE to different values of CR some empirical tests were conducted. Tables
3 and 4 present the dependence between the number of function evaluations
(nfe*1000) until the global optimum is approached with an accuracy of ǫ = 10−6

and values of CR in the case of two test functions: a multimodal separable one
(e.g. Rastrigin [6]) and a multimodal nonseparable one (e.g. Griewank [6]) both
of dimension n = 30 and having a global minimum in 0. In both cases we used
a DE/rand/1/c variant, a rather small population size (m = 50) and the same
value for the scaling factor, F = 0.5. The maximal number of evaluations was
set to 250000 (nfe=250). The absence of the nfe value means that the algorithm
did not approximated the global minimum with the desired accuracy. All results
are averages obtained for 30 independent runs. They confirm the fact that the
behavior of the algorithm depends on the value of the mutation probability, pm,
meaning that for the same value of pm (which corresponds to different values of
CR for binomial and exponential crossover) similar behavior is observed. In the
case of Rastrigin function, which is a separable one, good behavior is obtained for
small values of pm [8] which in the case of the binomial crossover corresponds
to small values of CR. In the case of exponential crossover, since for a large
range of CR the mutation probability is small, the set of CR values for which
the algorithm is able to identify the global optimum with the desired accuracy
is significantly larger than in the case of binomial crossover.

For the Griewank function the best behavior is obtained for values of CR in
the range [0.1, 0.5] in the case of binomial crossover and in the range [0.7, 0.95]
in the case of exponential crossover. Both ranges of CR values corresponds to
similar ranges of pm: [0.13, 0.52] (binomial crossover) and [0.11, 0.52] (exponen-
tial crossover). The different results obtained by the two crossover variants for
similar values of pm can be explained by the fact that in the case of nonseparable
functions mutating a sequence of components (as in exponential crossover) or
arbitrary components (as in binomial crossover) generates different exploration
patterns.

The previous experiments were based on the same value of the scaling pa-
rameter F . Since the control parameters in DE are interrelated one would expect
to have different appropriate values of F for the same value of CR when dif-
ferent types of crossover are used. Since DE is prone to premature convergence
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Table 3. Number of function evaluations (nfe*1000) needed to approximate the op-
timum with the accuracy ǫ = 10−6. Test function: Rastrigin, n = 30; Algorithm:
DE/rand/1, m = 50, F = 0.5.

CR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.92 0.95 0.97 0.99 1

pm (bin) 0.03 0.13 0.23 0.32 0.42 0.52 0.61 0.71 0.80 0.90 0.92 0.95 0.97 0.99 1
nfe (bin) 45.4 74.6 182.8 - - - - - - - - - - - -
pm (exp) 0.03 0.04 0.04 0.05 0.06 0.07 0.08 0.11 0.16 0.31 0.38 0.52 0.66 0.86 1
nfe (exp) 45.5 46.0 46.8 47.8 49.2 51.3 53.8 59.0 68.4 99.2 115.4 162.2 240 - -

Table 4. Number of function evaluations (nfe*1000) needed to approximate the op-
timum with the accuracy ǫ = 10−6. Test function: Griewank, n = 30; Algorithm:
DE/rand/1, m = 50, F = 0.5.

CR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.92 0.95 0.97 0.99 1

pm (bin) 0.03 0.13 0.23 0.32 0.42 0.52 0.61 0.71 0.80 0.90 0.92 0.95 0.97 0.99 1
nfe (bin) 62.6 39.0 36.2 35.1 36.6 39.5 41.4 45.7 59.3 72.4 72.9 72.9 75.9 96.5 91.9
pm (exp) 0.03 0.04 0.04 0.05 0.06 0.07 0.08 0.11 0.16 0.31 0.38 0.52 0.66 0.86 1
nfe (exp) 60.9 58.6 58.7 56.2 51.6 49.6 46.6 43.5 40.2 42.2 41.2 44.7 48.8 65.1 94.4

one first issue in choosing the control parameters of DE is to try to avoid such
a situation. Starting from the ideas that premature convergence is related with
loss of diversity and that the diversity is related with the population variance
in [11] is derived a theoretical relationship between the control parameters and
the population variance after and before applying the variation operators. More
specifically, if Var(z) and Var(x) denote the averaged variance of the trial and
current populations respectively then the following relationship is true:

Var(z) = (2pmF 2 −
2pm

m
+

p2
m

m
+ 1)Var(x) (4)

Based on this linear dependence between these two variances one can control the
impact of the mutation and crossover steps on variance modification by imposing
that

2pmF 2 −
2pm

m
+

p2
m

m
+ 1 = c (5)

where c should be 1 if we are interested to keep the same value of the variance
or slightly larger than 1 in order to stimulate an increase of the diversity (for
instance c = 1.05 means an increase of the population variance with 5% and
c = 1.1 means an increase with 10%). The result in [11] was obtained only in the
case of binomial crossover considering that pm = CR . By replacing in eq. 5 pm

with CR(1− 1/n)+ 1/n or with (1−CRn)/(n(1−CR)), one obtains equations
involving F ,CR,m and n. By solving these equations with respect to F one can
obtain lower bounds for F which allow avoiding premature convergence. The
dependence of such lower bounds of F on the values of CR for two values of the
constant c is illustrated in Figure 2. The differences between the value of Fmin

in the case of binomial and exponential crossover suggest that for the same value
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of CR ∈ (0, 1) the exponential crossover needs a larger value of F in order to
induce the same effect on the population variance.
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Fig. 2. Lower bound for F vs. CR for binomial crossover (dashed line) and exponential
crossover (continuous line). Parameters: m = 50, n = 30

These differences should be taken into account when conducting parameter
studies on DE variants involving binomial and exponential crossover(like in [7]).
For instance when tuning the value of CR the use of a uniform discretization of
[0, 1] as in [7] is appropriate for binomial crossover but not necessarily appropri-
ate for exponential crossover (since exponential DE is more sensitive to values
of CR between (0.9, 1] than to values between (0, 0.9]). Attention should be also
paid when using in combination with exponential crossover an adaptive or self-
adaptive variant of DE which was initially designed for binomial crossover. For
instance in the adaptive variant designed to avoid premature convergence [12]
the adaptation rules for F and CR should be modified according to eq. 4 and to
the relationship between pm and CR.

On the other hand for self-adaptive variants which use random selection for
the control parameters values (like in [2]) one have to take into account the fact
that if for binomial crossover a uniform distribution of CR values is appropriate
(leading to a uniform distribution of pm) a different situation appears in the
case of exponential crossover. In this case uniformly distributed values of CR
do not necessarily lead to uniformly distributed values of pm, meaning that the
adaptation strategy should be changed.

5 Conclusions

The comparative analysis of binomial and exponential crossover variants offered
us some information about the influence of parameter CR on the behavior of
DE. The dependence between the mutation probability, pm and the crossover
parameter, CR, was derived both in the case of binomial and of exponential
crossover applied to differential evolution. This dependence is linear in the bino-
mial case and nonlinear in the exponential one. For the same value of CR the
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mutation probability is larger in the case of binomial crossover than in the case
of exponential one, the difference being larger as the problem size, n, is larger.
This means that in order to reach a similar effect by the mutation step a DE
algorithm with exponential crossover should use a larger value for CR.

Moreover, in the case of exponential crossover one have to be aware of the
fact that there is a small range of CR values (usually [0.9, 1]) to which the DE
is sensitive. This could explain the rule of thumb derived for the original variant
of DE: “use values of CR in the range [0.9, 1]”. On the other hand, for the
same value of CR the exponential variant needs a larger value for the scaling
parameter, F , in order to avoid premature convergence.
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