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ABSTRACT 

In this work, we propose an approach for evolving rules from 
medical data based on an interactive multi-criteria evolutionary 
search: besides selecting the set of criteria and the sets of potential 
antecedent and consequent attributes, the user can also intervene 
in the searching process by marking the uninteresting rules. The 
marked rules are further used in estimating a supplementary 
optimization criterion which expresses the user’s opinion on the 
rule quality and is taken into account in the evolutionary process. 

Categories and Subject Descriptors 
I.2.6 [Learning]: Knowledge acquisition 

General Terms 
Algorithms, Human Factors 

Keywords 
Rules mining, multiobjective optimization, evolutionary 
algorithms, interestingness measures, interactive search 

1. INTRODUCTION 
Discovering new and useful knowledge from medical data 
represents a challenge for any data mining task, due to the 
heterogeneous nature of medical data (usually consisting of mixed 
attributes, i.e. nominal, numerical, and logical, with many 
erroneous or missing values) and to the requirements to express 
the knowledge in a medically comprehensible form. The final aim 
is assisting the medical specialists in making decisions, so the 
data mining tools should help them explore large volumes of 
medical facts stored in databases and extract meaningful rules 
upon which they can rely in both medical research and clinical 
hypothesis formulation [14]. 

 

An easily understandable manner of expressing hypotheses 
extrapolated from data is represented by rules in the form: 

IF “some conditions on the values of predicting attributes are 
true” THEN “some conditions on the goal attributes are true” 

If there is only one goal attribute and it specifies a class, then we 
discuss about a classification rule, expressing the possibility that 
data satisfying the antecedent (IF) condition belong to the class 
specified in the consequent (THEN) part. When the goal attributes 
do not express a class, then we deal with prediction rules, 
expressing hypotheses on the dependence between the antecedent 
and consequent parts of the rules. Finally, when the potential sets 
of antecedent and consequent attributes are not previously 
established, we investigate general association rules expressing 
co-occurrence of different attribute values.  Discovering and 
selecting rules in data is a search process usually guided by 
several measures based on which their potential quality and 
usefulness is evaluated: (i) accuracy measures (quantifying the 
ability of the rule to describe the data); (ii) comprehensibility 
measures (expressing the readability and understandability of 
rules); and (iii) interestingness measures (quantifying the potential 
to provide new, previously unknown knowledge). These measures 
are usually conflicting, i.e. an accurate rule is not necessarily 
interesting or easy to read, thus the searching process has to be 
multicriterial and dozens of such measures have been proposed 
and investigated [3, 13]. 

Evolutionary algorithms (EAs) proved to be valuable instruments 
in data mining [8] and a significant number of works describe the 
use of EAs in discovering rules from data [2, 7, 11, 12] or in post-
processing the set of rules previously extracted by non-
evolutionary approaches [9, 10]. Except for the work of Ishibuchi 
and Yamamoto, they treat the multi-criterial character of the 
search by aggregating all criteria in a single one through a pre-
specified aggregation function (e.g. a product or weighted sum).  
Approaches based on multi-objective evolutionary algorithms 
(MOEAs) have also been proposed [1, 6].  

However, these approaches fail to take into account the user: no 
set of quality criteria can be exhaustive, so the user should be 
involved in the search process. In this work, we propose an 
approach for evolving rules from data based on an interactive 
search: besides selecting the set of criteria and the sets of potential 
antecedent and consequent attributes, the user can also intervene 
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in the searching process by marking the uninteresting rules. They 
are further used in estimating a supplementary criterion which 
expresses the user’s opinion on the rule quality and is taken into 
account in the evolutionary process itself as all the other criteria. 

2. EVOLUTIONARY APPROACHES IN 
RULES MINING 
2.1 Designing an EA for Rules Mining 
When designing an EA for rules mining, one has to take into 
account at least the following aspects: (i) representation of rules; 
(ii) initialization of the population; (iii) recombination and 
mutation operators; (iv) rules evaluation and selection. 

There are two main approaches for rules representation: 
“Pittsburgh” and “Michigan”. In the former approach, each 
element of the population is a set of rules, thus it deals well with 
the interaction between rules and is appropriate when looking for 
sets of rules defining a classifier. On the other hand, the 
evolutionary operators are complex and rather difficult to be 
implemented [8]. In the latter approach, each element of the 
population encodes one rule, therefore all elements have the same 
structure and the evolutionary operators can be more easily 
implemented. Although it does not deal well with the rules’ 
interaction, the “Michigan” approach is the most frequently used, 
especially for prediction and association rules, where the 
interaction is not as critical as it is in the case of the classification 
ones. 

The evolutionary process starts from the initial population, so 
choosing appropriate initial rules compatible with the actual data 
is important. Therefore, most EAs for rules mining start with 
randomly generated rules, while still trying to involve values 
present in the data to be mined. The mutation and recombination 
operators are adapted in order to ensure the rules consistency.  

The success of an evolutionary rules mining process is highly 
dependent on the quality measures used to evaluate the population 
elements and on the strategy of selecting the elements to be 
transferred in the next generation. Since the quality of a rule 
depends on several criteria there are a large number of variants to 
compute the fitness value.  

2.2 Previous Work 
During the last decade a significant number of evolutionary 
algorithms were designed to assist the process of extracting rules 
from data.  The proliferation of the evolutionary approaches in 
rules mining is motivated by the fact that EAs can deal well with 
continuous numeric data and can be easy adapted to solve tasks 
arising at different stages of a rules mining process.  

For instance, Mata et al [11] proposed an evolutionary algorithm 
for finding the frequent item sets in numeric databases. The 
advantage of this approach over classical non-evolutionary 
techniques is that it does not require a previous discretization of 
continuous data. The characteristic of this algorithm is that the 
frequent item sets are iteratively discovered by guiding the 
searching process through a penalization mechanism of data 
instances already included in a subset. The fitness function is 
obtained by aggregating several terms related with: the rule’s 
support; the amplitude of the intervals of values corresponding to 
attributes; the number of attributes in the item set; and the 

penalization expressing the ratio of data covered by the current 
rule which are also included in other item sets.  

Other variants, as those proposed by Gopalan et al [9], use an EA 
to post-process a rule set extracted using different techniques. The 
post-processing aims at discovering the accurate and interesting 
rules in large sets of classification rules. The evolved structures 
correspond to sets of rules, as in the “Pittsburgh” approach, and 
the selection process consists of two stages: (i) accurate sets of 
rules are selected; then (ii) from these accurate sets of rules, the 
most interesting ones are selected. In [10], the EAs are also used 
for post-processing an existing set of rules, but they deal with 
fuzzy association rules and use a multi-objective approach. 

Evolutionary algorithms are also used to extract classification 
rules [7] and prediction rules [12] (satisfying the 
comprehensibility and interestingness requirements) directly from 
data.  The rules’ quality is computed by aggregating several 
accuracy, comprehensibility and interestingness measures, thus 
the EA has to deal with a single-objective optimization problem. 

Recently, Pareto-based multi-objective algorithms have been used 
to extract fuzzy association, numeric association, or classification 
rules [1, 6]. However, their common problem is that a single run 
of the algorithm leads to a set of rules which can be quite large, 
especially when the number of criteria is large. 

In order to apply such a technique to medical data, one should pay 
special attention to the nature of data (usually containing mixed 
attributes and a significant ratio of missing values) and to the 
choice of accuracy and interestingness measures.  

3. MEASURES FOR EVALUATING THE 
RULES QUALITY 
Let us consider rules having the following structure: 

),...,(),...(: 11 lk CTCTATATR →  (1) 

where AT denotes an antecedent term and CT denotes a 
consequent term. Each term involves one data attribute and is a 
triplet valueopa ,,  where a is an attribute, op is an operator 

(equal, different, in, not in, less than, greater than) and value is a 
possible value or a set of values for the attribute. Each term 
evaluates to a Boolean value, thus the rule described in (1) can be 
read as:  

IF  AT1,…,ATk are all true  THEN CT1,…,CTl are all true (2) 

A data instance (a1,…,an) satisfies (or is covered by) a given rule 
if all terms (antecedent and consequent) are true for the attribute 
values in that instance. If the antecedent terms are all true but 
there exists at least one consequent term which is false, then the 
data satisfy only the antecedent part of the rule. Similarly, if all 
consequent terms are true but at least one antecedent term is false 
then the data satisfy only the consequent part of the rule.  Let us 
denote by A the event that the antecedent part of the rule is 
satisfied (disregarding the satisfaction of the consequent) and by 
C the event that the consequent part of the rule is satisfied 
(disregarding the satisfaction of the antecedent). Then P(A,C) will 
be the probability that both the antecedent and consequent parts 
are satisfied, P(A) will be the probability that the antecedent part 
is satisfied, and P(C) the probability that the consequent part is 



satisfied. The negation A will denote the event corresponding to 
the case when the antecedent part is not satisfied. We denoted in a 
similar manner the negation of C and the corresponding 
probabilities. 

3.1.1 Accuracy measures 
 
Accuracy measures reflect the likelihood of rules (given the actual 
data) and the most frequently used are: rule support (Supp), 
confidence (Conf), accuracy (Acc), specificity (Spec) and 
sensitivity (Sens). They are defined as follows: 
 

)  ,( CAPSupp =  

)(/),( APCAPConf =   

),(),( CAPCAPAcc +=  (3) 

)(/),( CPCAPSpec =   

)(/),( CPCAPSens =   

The accuracy, specificity and sensitivity are mainly used in the 
case of classification tasks, therefore they can also be defined by 
using the elements of the confusion matrix (true positive/negative 
cases, false positive/negative cases).  For association and 
prediction rules, the typically used measures are the support and 
confidence. In the case of medical rule mining, these measures 
have to be treated with caution as high support or even high 
confidence rules are not necessarily interesting from a medical 
point of view. 

3.1.2 Comprehensibility measures 
 

The readability of a rule is usually related to its length, i.e. the 
number of related terms, therefore we used as a comprehensibility 
measure: 

n
klch +

−=1  (4) 

where n is the maximal number of terms (in the antecedent and 
the consequent part) and l+k is the effective number of terms in 
the rule. 

3.1.3 Interestingness measures 
 

There are more than 40 objective measures for evaluating the 
interestingness of a rule [13], so choosing appropriate measures 
for the actual data characteristics is not a trivial task, as Carvalho 
et al clearly illustrated in their paper, too [3]. They analyzed the 
correlation between objective interestingness measures and the 
real human interest evaluated by experts from each domain, and 
proposed a ranking of objective quality measures.  

Not quite surprisingly, different rankings were obtained for 
different datasets. For the medical data set they tested, the top 
three measures were: Phi-coefficient (Φ), odds ratio (OR) and 
cosine measure (cos), as described in equations (5). 
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The cosine measure is similar with the interest (lift) measure, as 
described in equation (6). 

)()(
),(
CPAP

CAPlift =  
(6) 

Ohsaki et al [13] presented a similar study, exclusively oriented 
towards medical data. A large set of measures (41) were evaluated 
according to some metacriteria expressing the relationship 
between the objective measure value given to a rule and the 
quality label assigned to the same rule by a medical expert. The 
top three measures obtained by combining the rankings 
corresponding to two medical sets (one on meningitis and the 
other on hepatitis) were: accuracy, peculiarity, and uncovered 
negative (UN). As peculiarity can be estimated only in the case of 
discrete attributes, we included in our analysis only the last one as 
a measure of interestingness: 

),( CAPUN =  (7) 

We can see that UN is the difference between accuracy and 
support, so maximizing this criterion leads to the maximization of 
the accuracy and minimization of the support. Thus it favours 
rules that are not necessarily of high support, but could be 
interesting. 

4. AN INTERACTIVE MOEA FOR RULES 
MINING 
We propose to involve the user in the search process, as a 
predefined aggregation of quality criteria is difficult to find and, 
moreover, it has been suggested that users can also change their 
opinion on the rules’ quality during the evaluation process itself 
[13]. The approach we propose is based on a multi-objective 
evolutionary algorithm having the general structure described in 
Figure 1. 

4.1 Characteristics of the Evolutionary 
Algorithm 
4.1.1 Rules Encoding 
Each element (chromosome) of the population corresponds to a 
rule and it consists of a list of components (genes) corresponding 
to all attributes in the data set. Each component consists of three 
fields: (presence flag, operator, value). 

The presence flag is a binary value specifying whether the 
corresponding attribute is involved in the rule (either in its 
antecedent or the consequent part). In case of binary attributes, 
this is the only important field. 

The operator allows specifying the condition the attribute should 
satisfy. We used two possible operators for each type of 
attributes. In the case of numerical attributes the possible 



operators are ≤ (coded by 0) and > (coded by 1). For the 
categorical attributes the operators are = (coded by 1) and ≠ 
(coded by 0). 

 

Generic MOEA for rules extraction 

1: Initialize a  population of m rules 
2: Evaluate the population 
3: REPEAT 
4:     Evaluate the rules in the current population 
5:     Generate m new rules by crossover 
6:     Apply mutation to rules obtained by crossover 
7:     Evaluate the new elements 
8:     Join the old and the new populations 
9:     Select the “best” m rules  from the joined population 
10: UNTIL “a stopping condition is satisfied” 

Figure 1. General structure of the evolutionary algorithm. 
 
The value field contains the value associated to the attribute.  In 
the case of numerical attributes, the terms can be of interval type 
(e.g. a in [min,max]) and the value contains the lower and the 
upper limits of that interval. The operator field is also differently 
interpreted in that situation (e.g. 0 encodes the operator not in and 
1 encodes the operator in). 
In all cases, an element is a fixed-length list with mixed (binary, 
integer, and real) values. In the following, the number of 
attributes is denoted with n. 
The difference between the antecedent and consequent attributes 
is made only in the evaluation of an element. In case of the 
classification rules, the class attribute is not included into the 
population elements, all attributes being predictive.  

4.1.2 Reproduction Operators 
During each generation, a new population is constructed by 
crossover and mutation from the current one. By crossover, a new 
rule is constructed starting from two randomly selected rules from 
the current population. In case of rules containing only terms of 
inequality type, the crossover procedure can be described as 
following:  

(i) if the attribute is absent from the both parent rules, it 
will be absent from the generated rule, as well;  

(ii) if the attribute is present in only one parent rule, its 
operator and value field are transferred to the new rule;  

(iii) if the attribute is present in both rules and satisfies the 
same type of condition (the operator field has the same 
value in both rules) then it is transferred to the new rule: 
for numerical attributes, the new value is the average of 
the values corresponding to the parent rules; for 
nominal attributes, one of the parents’ values is just 
randomly taken; 

(iv) if the attribute is present in both rules and it satisfies 
different conditions, then the triplet to be transferred 
into the new rule is taken from the parent rule which is 

better with respect to one of the evaluation criteria (in 
our experiments we used the first criterion specified by 
the user). 

The mutation has the role of modifying the rules obtained by 
crossover. For each attribute, mutation is applied with a given 
probability (e.g. pm=0.1 or pm=1/m) and it can affect one of the 
fields (i.e. presence flag, operator or value) and only one at each 
mutation step. By switching the presence flag, some attributes can 
be inserted or removed from the rule, thus leading to either a more 
general or a more specific rule. By changing the operator field, 
one changes the condition the attribute should satisfy. The 
mutation of the value field consists in choosing a new value based 
on a uniform selection from the range of values corresponding to 
the attribute. If the new element generated by crossover and the 
mutation is not valid (e.g. it does not contain any antecedent or 
consequent term), then a repairing rule is applied (e.g. a randomly 
generated antecedent or consequent term is introduced). 

In case of rules containing terms of interval type, we used the 
recombination operator described in [1]. 

4.1.3 Selection and Archiving 
After a new population is created by crossover and mutation, a 
selection step (typical to MOEAs) is applied. Our selection 
strategy is similar to that used in NSGA-II [5], meaning that the 
elements in the joined population (parents and offsprings) is 
ranked based on the non-domination relationship. A rule is 
considered as non-dominated, with respect to rules in a given set, 
if no other rule in that set is better with respect to all criteria. All 
the elements that are non-dominated with respect to all elements 
in the joined population belong to the first nondomination front 
and have the rank 1. Subsequently, the nondominated elements in 
the population obtained by ignoring the elements of rank 1 belong 
to the second nondomination front and so on. The m elements 
corresponding to the new generation are selected from the 2m 
ranked elements in their ranks’ increasing order. For stimulating 
the diversity of the resulting Pareto front, a crowding distance is 
used as a second selection criterion: from two elements having the 
same rank, the one with a larger crowding distance (suggesting 
that it belongs to a less crowded region) is selected. The crowding 
distance can be defined in either the objective or the decision 
variables space. 

A particular characteristic of our approach is related to the 
crowding distance between rules. We analyzed two types of 
distances, one expressing the structural differences between rules 
and another expressing the difference between the data subsets 
covered by the rules. In the case of two rules R=(t1,…,tn) and 
R’=(t’1,…,t’n), the  structural distance is defined as follows: 
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where pj denotes the presence flag and oj denotes the operator 
corresponding to attribute j. Thus two rules are considered to be 
identical from a structural point of view if they contain the same 



attributes and the terms have identical associated operators.  The 
distance related with the rule coverage is defined as the cardinal 
of the subset of data which are either covered by the first rule but 
are not covered by the second rule, or are covered by the second 
rule and are not covered by the first one. Thus the cover-based 
distance is: 

))'(cover)(cover()',( RRcardRRd C Δ=  (9) 

where cover(R) is the set of data instances which satisfy the rule 
(are covered by the rule) and Δ denotes the symmetrical 
difference between two sets. 

After a given number of generations, an archive of nondominated 
elements is constructed. Not all non-dominated elements from the 
current population are transferred in the archive, but they are 
filtered such that both the structural and the cover-based distances 
between any two elements of the archive are larger than a given 
threshold (in our analysis we used 0.01). 

4.2 User Guided Evolutionary Search  
An interactive search allows the user to interfere with the 
evolutionary process in order to guide it towards interesting 
regions of the search space.  The overall idea of the interactive 
process of rules evolving is illustrated in Figure 2. In the 
interactive variant, the search process consists of several steps; at 
each one, the population is evolved for a given number of 
generations and the archive of the selected non-dominated rules is 
provided to the user together with all the objective measures 
computed for the testing dataset (measures not necessarily limited 
to those used as criteria in the optimization process). In our 
implementation, we used the following list of measures: support, 
confidence, accuracy, specificity, sensitivity, comprehensibility, 
Phi-coefficient, odds ratio, lift, Piatesky-Shapiro, Jaccard, kappa-
coefficient [3] and also uncovered negative and relative risk [13].  

Based on these criteria and on a subjective evaluation, the user 
can decide whether there are uninteresting or incomprehensible 
rules. Then (s)he can mark these rules and proceed to the next 
step of the search. The effect of marking the undesirable rules is 
twofold: firstly, the population elements corresponding to the 
marked rules are replaced with randomly initialized elements; 
secondly, the marked rules are added to a list (Lp) of prohibited 
rules. This list is used to compute a supplementary optimization 
criterion which expresses the user’s evaluation. For a rule R, this 
criterion is computed as the distance between R and the list of 
prohibited rules:  

}');',(min{)( PLRRRdRue ∈=  (10) 

The distance between rules can be either the structural distance 
(eq. (8)) or the cover-based distance (eq. (9)) introduced in the 
previous section. By using the user’s evaluation as a quality 
criterion, rules “similar” to those marked as uninteresting have 
little chance to evolve and survive during the next steps of the 
evolution. On the other hand, employing the user’s evaluation in 
the search can redirect it towards different regions of the 
searching space, thus leading to the discovery of new rules. This 
diversity enhancing effect is analyzed in Section 5.2. A possible 
drawback of using a supplementary criterion is that it usually 
leads to a larger number of nondominated elements.   

Another interactive variant of MOEAs  is presented in [5], but it 
is not based on introducing new optimization criteria; it uses other 
techniques (non-evolutionary) to improve the current Pareto front 
or to focus the search towards a given region of the front. 

Interactive variant  

1: Initialize a  population of m rules 
2: Evaluate the population 
3: FOR step:=1,maxStep DO 
4:      Execute the MOEA (lines 3-10 in Figure 1) 
5:      Construct the archive of rules 
6.      Evaluate the rules in the archive for a test dataset 
7:      Visualize the rules’ archive 
8:      Get the user evaluation on the rules in the archive   
9:      Process the rules marked by the user as uninteresting: 

• Replace the corresponding elements from the   
population with newly initialized elements 

• Add the marked rules to the list of prohibited 
ones 

10:       Re-evaluate the current population by taking into 
      account the user evaluation criterion (eq. (10)) 

11: ENDFOR 

Figure 2. General structure of the interactive variant of the 
rules’ extraction algorithm. 

 

5. EXPERIMENTS IN MEDICAL RULES 
MINING 
The interactive variant described in the previous section was 
implemented such that the user can select the following elements: 

• Rules type.  Both classification and prediction rules can 
be evolved. In case of classification ones, each run of 
the algorithm leads to rules corresponding to one class 
and only the antecedent terms of a rule are encoded, the 
consequent being implicit. 

• Lists of attributes to be included in the 
antecedent/consequent parts of the rules.  

• Criteria to be used in the searching process. The user 
can choose an arbitrary subset of measures from those 
available (mentioned in the previous section). 

• Parameters of the evolutionary algorithm. The main 
parameters the user can set are: population size; 
crossover and mutation probabilities; number of 
generations between two consecutive user evaluation 
steps. 

The approach was tested for the medical datasets from the UCI 
repository (http://mlearn.ics.uci.edu/MLRepository.html) and for 
a set of obstetrical data collected during 2006 in a hospital of 
obstetrics-gynaecology.  The aim of the experiments was twofold: 
to validate the ability of the evolutionary approach to discover 
accurate rules, and to analyze the impact of the user’s intervention 
in the searching process. 

http://mlearn.ics.uci.edu/MLRepository.html


5.1 Validation in the Case of Classification 
Rules 
In order to validate the ability of the implemented multi-objective 
evolutionary algorithm to extract reliable rules, we firstly tested it 
in the case of classification problems.  The approach we followed 
was based on the idea of evolving rules corresponding to one 
class. Therefore,  only the terms in the antecedent part of the rules 
were evolved.  As a class cannot be described by a single rule 
(usually requiring a set of rules), the MOEA provides a set of 
reciprocally non-dominated rules, which can be interpreted as 
describing the class itself (even if it does not cover the entire 
class). So the rules were evaluated both individually and as a set, 
using a five-fold cross-validation approach. In all tests, the 
population size was set to 50, the maximal number of generations 
to 100, and the mutation probability to 0.1. 

The results in Table 1 were obtained for Pima Indians Diabetes 
data set, based on two optimization criteria: accuracy (Acc) and 
uncovered negative (UN).  These results are comparable with 
those obtained by applying other rule-based classifiers (Table 2) 
implemented in the Weka data mining tool 
(http://www.cs.waikato.ac.nz/ml/weka/): simple rules classifiers 
(ZeroR, OneR), conjunctive rules classifier (CR), decision table 
majority classifier (DT), propositional rule learner based on 
repeated incremental pruning (JRIP), nearest neighbor-like 
classifier with non-nested generalized exemplars (NNge), partial 
decision trees (PART).  
Rules having high accuracy do not necessarily have a high 
uncovered negative (UN) value; for instance, the highest accuracy 
rule obtained when using fold 5 of the data set was:  

“IF (Plasma glucose concentration>127, 2-Hour serum 
insulin (mu U/ml)<599, Body mass index >29) THEN 
class=diabetes” 

A rule with a high value of UN was:  
“IF (Plasma glucose concentration>155, 2-Hour serum 
insulin (mu U/ml)<613, Body mass index >29, Triceps 
skin fold thickness<43, Diabetes pedigree function >0, 
Age <58) THEN class=diabetes”. 

 
Table 1. Measures associated to the set of rules evolved from 

the Pima data set . Optimization criteria: Accuracy (Acc),  
Uncovered Negative (UN). Rules containing terms of the 

inequality type. 

Testing set Training set
Fold No. 

rules Acc Spec Sens UN Lift Acc UN 

1 10 0.73 0.86 0.50 0.55 1.87 0.78 0.65

2 10 0.73 0.83 0.55 0.53 1.82 0.75 0.65

3 10 0.71 0.88 0.40 0.57 1.84 0.76 0.65

4 6 0.74 0.95 0.35 0.62 2.28 0.75 0.64

5 12 0.77 0.85 0.62 0.55 1.98 0.77 0.65
Avg 
stdev 

9.6 
2.1 

0.73 
0.02 

0.87 
0.04 

0.48 
0.10 

0.56 
0.03 

1.95 
0.19 

0.76 
0.01 

0.64 
0.004

 

Table 2. Results obtained by other rule-based classifiers for 
the Pima dataset 

 Zero
R CR DT JRIP NNge OneR PART 

Acc 0.65 0.71 0.72 0.75 0.74 0.72 0.74 

 
We also analysed the influence of the rules’ type by applying 
another variant of the algorithm to the same set of data: in the 
case of numerical attributes, we used terms of interval type and 
the recombination operator proposed in [1]. The corresponding 
results are presented in Table 3: no significant differences were 
identified between these two variants. Examples of rules, 
containing terms of interval type, evolved using the variant of the 
algorithm based on the operators described in [1] are:  

“IF Plasma glucose concentration in [156,196], Body 
mass index in [8.33,58.64] THEN class=diabetes”  
(high accuracy rule) 

“IF Plasma glucose concentration in [156,188], 
Number of pregnancies in [3,14], 2-Hour serum insulin 
(mu U/ml) in [87,730], Body mass index in [7.9,59.74] 
THEN class=diabetes” (high uncovered negative 
measure) 

Table 3. Measures associated to the set of rules evolved from 
the Pima data set . Optimization criteria: Accuracy (Acc),  
Uncovered Negative (UN). Rules containing terms of the 

interval type. 

Testing set Training set 
Fold No. 

rules Acc Spec Sens UN Lift Acc UN 

1 7 0.70 0.83 0.46 0.53 1.69 0.74 0.65 

2 9 0.69 0.83 0.44 0.53 1.66 0.74 0.64 

3 8 0.70 0.94 0.27 0.61 2.03 0.70 0.65 

4 6 0.76 0.93 0.45 0.60 2.23 0.74 0.65 

5 12 0.73 0.94 0.35 0.61 2.19 0.73 0.65 
Avg 
stdev

8.4 
2.3 

0.71 
0.02

0.89 
0.05 

0.39 
0.08 

0.57 
0.04 

1.96 
0.27 

0.73 
0.01 

0.64 
0.004 

 

5.2 Impact of User Interaction 
In order to gather preliminary information on the impact of the 
user’s intervention in the searching process, we conducted an 
experiment based on three scenarios:  

(i) without user interaction;  

(ii) with user interaction, while using the structural distance 
to evaluate the user criterion,  ue;  

(iii) with user interaction, while using the cover-based 
distance to evaluate the user criterion, ue.   

In each case, the evolutionary process was initially guided by 
only one optimization criterion (accuracy), so in the case of the 
first scenario only this criterion influenced the search. For the 
other two scenarios, the user’s evaluation criterion influenced the 

http://www.cs.waikato.ac.nz/ml/weka/


search process, starting with the second step. In all cases, 10 steps 
were run starting from the same initial population and, during 
every step, the population was evolved for 100 generations. At the 
same time, at each step, the user’s intervention (for scenarios (ii) 
and (iii)) consisted in marking all rules as uninteresting. This was 
an extreme user intervention, whose effect was guiding the 
searching process towards different regions in the rules’ space and 
led to variations in the values of the quality measures associated 
to the rules. 

Figures 3 and 4 illustrate the evolution of two interestingness 
measures (uncovered negative and lift) for the three scenarios 
described above. As expected, marking some rules as 
uninteresting and including them in the list of prohibited rules 
allowed discovery of new rules with different values for the 
measure of interestingness.  

 

 
Figure 3. Evolution of the Uncovered Negative (UN) measure:  
(i) without user interaction (triangles); (ii) with user 
interaction and structural distance (points); (iii) with user 
interaction and cover-based distance (stars). 

 
Figure 4. Evolution of the Lift measure:  (i) without user 
interaction (triangles); (ii) with user interaction and structural 
distance (points); (iii) with user interaction and cover-based 
distance (stars). 

As a further step, we tried to analyze the possibility to explore the 
rules’ space in the case of a set of real obstetrical data containing 
information about mothers: constitutional characteristics, health 
status, and the gestational age at the birth moment. The final aim 
of our investigations was to identify the risk factors for preterm 
birth and to explore various hypotheses concerning the 

relationship between the characteristics of the mother and the 
birth outcome. The set of data contained 2686 records for the 
births occurred during the year 2006 at one regional hospital of 
obstetrics-gynaecology. The records corresponded to two main 
classes: the pre-term birth (370 records, representing 13.77%) and 
the on-term birth (2316 records, representing 86.23%). Each 
record contained 63 attributes describing different characteristics 
of mothers and their new-born babies.  The percentage of missing 
values for the attributes was 23%, which generated difficulties in 
applying the classification and prediction methods. We considered 
that records with missing values for the attributes involved in a 
rule did not match that rule, thus they were ignored when 
computing the probabilities involved in the rule evaluation 
measures.  In order to limit the size of the search space and of the 
set with non-dominated rules, we limited our search to the 
prediction rules having attributes related to the constitutional 
characteristics of the mother in their antecedent part (e.g. height 
(h), body mass index before pregnancy (BMI), abdominal 
circumference (AC) and weight gain (WG) at the birth moment), 
while the consequent part was the gestational age (GA).  Our 
initial expectation was to find rules having in the consequent part 
terms of the form: “Gestational age < a value near or less than 
37 weeks” (in order to catch the pre-term birth cases). Therefore, 
we started the searching process having in mind the idea of 
considering as uninteresting the rules with the operator “greater 
than” in their consequent parts. As optimization criterion, we 
employed the product between specificity and sensitivity. During 
the first step, the optimization problem was single-objective, but 
during the next steps the user’s evaluation was taken into account 
and the problem became a bi-objective one. 

Table 4. Evolution of the number of the discovered rules in 
the case of obstetrical dataset 

Step No. rules
No. rules 

TC=”GA>val” 
No. rules 

TC=”GA<val”
User action 

1 1 0 1 Mark all rules

(R1)    IF (h>165.3, BMI>7.8, WG<4.36) THEN (GA<22.3) 
Supp=0.001,Conf=1,Spec=0.99,Sens=0.99,Lift=538,UN=0.98 

2 1 1 0 Mark all rules

3 3 3 0 Mark all rules

4 5 5 0 Mark all rules

5 2 0 2 - 

(R2)   IF(BMI>10.5, AC>95.3,WG<6.4) THEN (GA<25.35) 
(Supp=0.001,Conf=0.03, Spec=0.93,Sens=0.5, Lift=9.9,UN=0.93

(R3)    IF(BMI>1.42,WG<2.32) THEN (GA<21.3) 
(Supp=0.001,Conf=0.33,Spec=0.97,Sens=0.97,Lift=179,UN=0.9)

6 2 0 2 Mark all rules

7 2 0 2 Mark all rules

(R4) IF (h<177, AC<107,WG<5.15) THEN (GA<25.2) 
(Supp=0.001,Conf=0.08,Spec=0.9,Sens=0.5,Lift=22.4,UN=0.9) 

(R5) IF (h<183, WG<2.68) THEN (GA<17.5) 
(Supp=0.001,Conf=0.33,Spec=0.88,Sens=0.1,Lift=179,UN=0.88)

8 5 3 2 - 



Analyzing the number of discovered rules reported in Table 4, 
one can see that by marking as uninteresting the rules satisfying a 
given pattern (in our case the pattern was defined by the form of 
the consequent term) the search was oriented towards rules not 
satisfying that pattern. On the other hand, as a consequence of the 
optimization criterion choice, some rules with very small support 
but a high lift value were discovered.  Such rules correspond to 
exceptional cases which do not provide a general knowledge, but 
can be of interest for the medical doctors. 

6. CONCLUSIONS AND FURTHER WORK 
The strategy we proposed to allow the user to influence the 
process of rules’ discovery is only a first step in developing an 
interactive system aimed at supporting medical doctors in 
exploring the data and extracting new, possibly unexpected 
knowledge. Despite its simplicity, the strategy allows the 
guidance of the searching process towards regions of higher 
interest. 

The results we obtained with the obstetrical data were not as 
relevant as we might have expected due to multiple factors: on the 
one hand, the particularities of the data (many missing and 
erroneous values); on the other hand, the limitations of the 
evolutionary strategy itself. Using numerical values for the 
continuous attributes in order to avoid a preliminary discretization 
was appealing, but this led to a very large searching space and to 
the discovery of rules which were not easy to interpret. Using 
fuzzy variable instead of crisp ones could improve the quality of 
the final rules, especially in case of medical data. 

Taking all these into account, we plan to adapt the searching 
strategy for fuzzy rules. Moreover, when having more than two 
optimization criteria, the non-dominated selection strategy we 
used is not able to sustain the diversity of the Pareto front, so 
another problem to be addressed is improving the selection 
strategy of the MOEA in order to deal with a high number of 
optimization criteria. 
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