
Constrained Evolutionary Search for Model
Parameters.

Case Studies in Thymocyte Dynamics

Daniela Zaharie

Department of Computer Science,
West University of Timişoara, Romania
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Some problems requiring parameter estimation

A parameterized model in pharmacology
Allosteric two-state model of receptor activation

L - receptor isomerization constant

K (M) - equilibrium dissociation
constant for A (B)

γ - binding cooperativity for A and B

δ - activation cooperativity A and B

α, β - intrinsic efficacies

[A] ([B])-orthosteric (allosteric) ligand concentration
[R]a ([R]t )- activated (total) receptor concentration

[R]a
[R]t

=
KL(M + β)[B] + αL(M + βγδ[B])[A]

K (M(1 + L) + (1 + βL)[B]) + (M(1 + αL) + γ(1 + αβδL)[B])[A]
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Some problems requiring parameter estimation

A parameterized model in pharmacology
Allosteric two-state model of receptor activation

What is known?
Experimental values for [A], [B],
[R]a/[R]t

What is required?

K , L, M, α, β, γ, δ

Typical approach:

minimize the mean squared error
(MSE)
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Some problems requiring parameter estimation

A parameterized model in pharmacology
Allosteric two-state model of receptor activation

What is known?
Experimental values for [A], [B],
[R]a/[R]t

What is required?

K , L, M, α, β, γ, δ

Typical approach:

minimize the mean squared error
(MSE)

Particularities:
explicit relationship between MSE and the parameters
not easy to establish initial approximations for the parameters
possible several equally good sets of parameters =⇒ multi-modal
optimization

[D.Roche et al, 2013]
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Some problems requiring parameter estimation

A parameterized model in immunology
Compartmental models of the thymus

the thymus is an import organ of the
immune system
its main role is to produce various types of
thymocytes (T cells):

double negative T cells (N population)
double positive T cells (P population)
single positive T cells (M4 and M8
populations)

there are several processes involving the
T cell populations:

cell proliferation (growth)
cell death (involution)
cell maturation and differentiation
(transfer)

D. Zaharie (UVT) Constrained Evolutionary Search ECODAM - Iasi, 25 June 2013 5 / 57



Some problems requiring parameter estimation

A parameterized model in immunology
Compartmental models of the thymus

Parameters:
proliferation rates: rn,rp,r4,r8

death rates: dn,dp,d4,d8

transfer rates: sn,s4,s8,so4,so8

bone marrow inflow rate: b

carrying capacities: K , Kn

Example: Mehr’s model [Mehr et al, 1996]


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
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



















Ṅ(t) = rnN(t)(1 − N(t)/Kn)− dnN(t)− snN(t) + b(1 − N(t)/Kn)

Ṗ(t) = rpP(t)(1 − Z (t)/K )− dpP(t)− (s4 + s8)P + snN(t)

Ṁ4(t) = r4M4(t)(1 − Z (t)/K )− d4M4(t)− s04M4(t) + s4P(t)

Ṁ8(t) = r8M8(t)(1 − Z (t)/K )− d8M8(t)− s08M8(t) + s8P(t)

Z (t) = N(t) + P(t) + M4(t) + M8(t)
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Some problems requiring parameter estimation

A parameterized model in immunology
Compartmental models of the thymus

What is required?
proliferation/ death/ transfer/
inflow rates

carrying capacities (Kn, K )

What is known ?
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t@days D
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8
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12

14

cellsH tL

Experimental estimates of the number
of cells during their evolution (N-red,
P-blue, M4-magenta, M8-green)
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Some problems requiring parameter estimation

A parameterized model in immunology
Compartmental models of the thymus

Particularities:

search for parameters minimizing the mean squared error betwen
the numerically estimated solutions of the ODE and the
experimental data

”semi-transparent” model: no explicit analytical relationship
between MSE and the parameters to be estimated
constraints:

Kn < K (relationship between the carrying capacities)
desired evolution of the populations of cells (e.g. steady-state or
involution)

[PNII-ID-PCE: REVISAL - Modeling and simulation of the dynamics of thymocyte populations and cells of the thymus medulla

under normal and pathological situations, 2012-2014]

D. Zaharie (UVT) Constrained Evolutionary Search ECODAM - Iasi, 25 June 2013 8 / 57



Some problems requiring parameter estimation

A parameterized software module
Image registration

Registration: Find a transformation which maps pixels of one
image to corresponding pixels of the other image

[D. Gil et al., 2013]

D. Zaharie (UVT) Constrained Evolutionary Search ECODAM - Iasi, 25 June 2013 9 / 57



Some problems requiring parameter estimation

A parameterized software module
Image registration

Particularities:

What is available: a software module implementing a registration
algorithm and maximal error threshold

What is required: parameters of the registration algorithm such
that the error is below the threshold and the execution time of the
algorithm is minimized

”opaque” model: almost nothing is known about the algorithm
inside the software module (it receives the parameters and
provides the error and the running time)

constraints on parameters (e.g p1 < p2) and on the error (err < ǫ)

the values provided for the execution time can be uncertain
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Some problems requiring parameter estimation

Summary: types of parameterized models

”Transparent” models

the search criterion depends in an explicit way on the parameters

gradient information could be available
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Some problems requiring parameter estimation

Summary: types of parameterized models

”Transparent” models

the search criterion depends in an explicit way on the parameters

gradient information could be available

”Semi-transparent” models

the search criterion depends only in an implicit way on the
parameters

its evaluation requires numerical solutions of some equations
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Some problems requiring parameter estimation

Summary: types of parameterized models

”Transparent” models

the search criterion depends in an explicit way on the parameters

gradient information could be available

”Semi-transparent” models

the search criterion depends only in an implicit way on the
parameters

its evaluation requires numerical solutions of some equations

”Opaque” models

the evaluation of the search criterion is based on a ”black box”
module

nothing is known about the influence of the parameters on the
search criterion
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Constrained evolutionary search of the parameter space
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Constrained evolutionary search of the parameter space

Why using an evolutionary search?

it requires minimal knowledge
on the model

if properly designed it ensures
a good exploration of the
parameter space
it can be used for:

multimodal/ multiobjective/
constrained optimization

and can provide several
results of similar quality

Population

initialization


Explorative

operators


Evaluation


Exploitative

steps


Stop ?


results


Population-based stochastic
search

Exploration: mutation and
crossover (reproduction)

Exploitation: selection
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Constrained evolutionary search of the parameter space

Which search method to use?

Many options:
Evolution Strategies (ES)

Covariance Matrix Adaptation
ES (CMA-ES)

Particle Swarm Optimization
(PSO)

Differential Evolution (DE)

Ant Systems (AS)

Harmony Search (HS)

Artificial Bees Colonies (ABC)

other nature inspired
metaheuristics (e.g. firefly,
cuckoo, bacterial foraging,
gravitational search)

D. Zaharie (UVT) Constrained Evolutionary Search ECODAM - Iasi, 25 June 2013 14 / 57



Constrained evolutionary search of the parameter space

Which search method to use?

Many options:
Evolution Strategies (ES)

Covariance Matrix Adaptation
ES (CMA-ES)

Particle Swarm Optimization
(PSO)

Differential Evolution (DE)

Ant Systems (AS)

Harmony Search (HS)

Artificial Bees Colonies (ABC)

other nature inspired
metaheuristics (e.g. firefly,
cuckoo, bacterial foraging,
gravitational search)

Selection criteria:

appropriateness - ability to
deal with the problem
characteristics

simplicity - easy to
understand/ implement

competitiveness - good
behavior for test functions

availability - easy to find
implementations
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Constrained evolutionary search of the parameter space

Common types of constraints
From simple to complex constraints

Bounding box constraints: x ∈ [a, b]

Repairing rules:

iterate the reproduction operator until the offspring satisfies the
constraint

use a symmetry based rule, i.e. when x 6∈ [a, b] iterate:

x ′ =

{

b − (x − b) if x > b
a + (a − x) if x < a

until x ′ ∈ [a, b].

select randomly an element in the search range
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Constrained evolutionary search of the parameter space

Common types of constraints
From simple to complex constraints

Constraints on the set of feasible values: x ∈ [a, b] ∩ Z

use specific operators to generate new elements

use operators for search in continuous spaces + apply a rounding
function

Simple inequality constraints: x < y

instead of searching for x and y

search for x and δ > 0 (such that y = x + δ)
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Constrained evolutionary search of the parameter space

Common types of constraints
From simple to complex constraints

General form of a constrained optimization problem

Find x which minimizes f (x) subject to

gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p (usually transformed in |hj(x)| < ǫ)

Types of constraints

gi and hj depend explicitely on x - easy to check if the constraint is
satisfied

there is no explicit dependence between gi , hj and x (e.g. the
constraint could just say that the estimated model behaves in a
given way) - only a degree of constraint satisfaction can be
estimated

D. Zaharie (UVT) Constrained Evolutionary Search ECODAM - Iasi, 25 June 2013 17 / 57



Constrained evolutionary search of the parameter space

Dealing with constraints in evolutionary search
Penalty method

Main idea:

combine the objective function with a penalty function measuring the
degree of violating the constraints

F (x) = f (x) +
m
∑

i=1

ri max(0, gi(x)) +
p

∑

j=1

cj |hj(x)|

Advantage:

easy to implement

Disadvantage:

the choice of the penalty weights is not obvious
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Constrained evolutionary search of the parameter space

Dealing with constraints in evolutionary search
Feasibility rules

Main idea (Deb’s feasibility rule):

use separate objective value (f ) and penalty value (degree of constraint
violation - φ) when compare two elements; x is better than x ′ if:

x and x ′ are both feasible and f (x) < f (x ′)

x is feasible and x ′ is not feasible

x and x ′ are both unfeasible and φ(x) < φ(x ′)

Advantages:

easy to implement and to couple with various search algorithms

it does not require parameters
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Constrained evolutionary search of the parameter space

Dealing with constraints in evolutionary search
Feasibility rules

Main idea (Deb’s feasibility rule):

use separate objective value (f ) and penalty value = degree of
constraint violation (φ) when compare two elements; x is better than x ′

if:

x and x ′ are both feasible and f (x) < f (x ′)

x is feasible and x ′ is not feasible

x and x ′ are both unfeasible and φ(x) < φ(x ′)

Disadvantage:

separating the constraints and the objective function can lead to
diversity loss (because they strongly favour the feasible solutions)
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Constrained evolutionary search of the parameter space

Dealing with constraints in evolutionary search
Stochastic ranking

Main idea:

decides randomly which selection criterion to use (objective or penalty
function)
x is better than x ′ if

{

((φ(x) = φ(x ′) = 0) or (rand(0, 1) < Pf )) and (f (x) < f (x ′)))
φ(x) < φ(x ′)

Advantages:

it limits the diversity loss (by accepting promising but unfeasible
candidates)
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Constrained evolutionary search of the parameter space

Dealing with constraints in evolutionary search
Stochastic ranking

Main idea:

decides randomly which selection criterion to use (objective or penalty
function)
x is better than x ′ if

{

((φ(x) = φ(x ′) = 0) or (rand(0, 1) < Pf )) and (f (x) < f (x ′)))
φ(x) < φ(x ′)

Disadvantages:

it requires the specification of a parameter (Pf , e.g. Pf = 0.45)
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Case study: modelling a perturbed thymocyte dynamics
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Case study: modelling a perturbed thymocyte dynamics

Case study: perturbed thymocyte dynamics

Context

the dynamics of thymocytes is very sensitive to any pathological
situation associated with an increase of glucocorticoids (e.g.
diabetes,obesity, infections)

by administrating a particular glucocorticoid (dexamethasone -
DXM) one can induce a transient involution of thymus activity
similar with that common in pathological situations

it would be useful to model this transient perturbation and to
extract information on the impact DXM has on various
mechanisms (cell proliferation, death and differentiation)

Experimental data [dr. F. Mic, UMF Timisoara]

more than 70 experiments on young and adult mice (before and
after a treatment with DXM)
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Case study: modelling a perturbed thymocyte dynamics

Case study: perturbed thymocyte dynamics
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Case study: modelling a perturbed thymocyte dynamics

Case study: perturbed thymocyte dynamics

What is known ?

DXM induces a significant depletion of thymocytes, especially of
DP cells

after treatment the thymus rebounds and the pre-treatment level is
almost reached after 14 days

What would be useful to know?

can the perturbation induced by DXM be modelled through
transiently perturbed rates/ mechanisms?

which of the mechanisms (proliferation, death, differentiation) is
most affected?

when does the perturbation on each mechanism reaches the
maximal value?
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Case study: modelling a perturbed thymocyte dynamics

Case study: perturbed thymocyte dynamics

Possible approach

start from a model describing the normal dynamics (e.g. a
multi-compartmental model)

introduce transient perturbations into the model (e.g perturbed
rates, transient inhibition of proliferation)
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Case study: modelling a perturbed thymocyte dynamics

Perturbed rates

Main idea: additive perturbation of rates
Perturbing functions family

ξ(C; t) =
c1

tc3 + c2
−

c1c4/c2

tc5 + c4
, ci > 0

Perturbed rates: r + ξ(C; t)
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Case study: modelling a perturbed thymocyte dynamics

Parameters estimation

Optimization problem: find the parameters which
minimize the mean squared error (MSE)
satisfy constraints concerning the positivity of all perturbed rates
and the vanishing of the perturbation

MSE(x) =
1

4n

∑

π∈{N,P,M4,M8}





1
maxj=1,n{π̄

2
j }

n
∑

j=1

(π(x ; tj)− π̄j)
2





n = number of experimental values

π̄ = experimental values corresponding to each of the four
populations

π(x ; t) = numerically estimated solutions
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Case study: modelling a perturbed thymocyte dynamics

Constraints on parameters

For each perturbed rate, two constraints should be satisfied

r + ξ(C; t) ≥ 0 for all t ∈ [ta, tf ]

|ξ(C; tf )| < ǫf

ta = time moment when the perturbation starts (treatment
administration moment)

tf = time moment when the perturbation should be small enough
(the effect of treatment is passed)

ǫf = small enough value (negligible perturbation)
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Case study: modelling a perturbed thymocyte dynamics

Constraints on parameters

Main difficulty in dealing with the constraints

the constraints on positivity of rates cannot always be checked
exactly

in some cases, sufficient conditions for positivity can be found but
usually they are not also necessary:

r ≥ max{c1/(c
2
2 + c2), c1c4/(c

2
2 + c2c4 + c2)}

need to define a degree of constraint satisfaction

Sj
p(Cj) = 1 if the sufficient condition is satisfied, otherwise

Sj
p(Cj) =

card{t ∈ Th|rj + ξ(Cj ; t) > 0} − δ

card(Th)

Th = {ta, ta + h, . . . , tf}, h > 0 − discretization step, δ > 0
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Case study: modelling a perturbed thymocyte dynamics

Constraints on parameters

Positivity constraint:

Sj
p(Cj) =

card{t ∈ Th|rj + ξ(Cj ; t) > 0} − δ

card(Th)

Perturbation vanishing constraint:

Sj
v (Cj) =

{

1 if |ξ(Cj ; tf )| ≤ ǫf
1 − min{1, |ξ(Cj ; tf )|} otherwise

Combined constraints satisfaction degree:

S(C) =

q
∏

j=1

Sj
p(Cj)S

j
v (Cj) ∈ [0, 1]
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Case study: modelling a perturbed thymocyte dynamics

Constraints on parameters
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Constraints handling: different ways of combining the satisfaction
degree with MSE
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Case study: modelling a perturbed thymocyte dynamics

Various comparison rules

x is considered better than x ′ if one condition is satisfied

Rule A (θ - threshold for the satisfaction degree, e.g.θ = 0.99):

S(x) ≥ θ and S(x ′) < θ;

S(x) ≥ θ and S(x ′) ≥ θ and MSE(x) < MSE(x ′);

S(x) < θ and S(x ′) < θ and S(x) ≥ S(x ′)

(similar to Deb’s rule)

Rule B:

S(x) ≥ θ and S(x ′) < θ

S(x)S(x ′) = 0 and MSE(x) ≤ MSE(x ′)

S(x) 6= 0, S(x ′) 6= 0 and MSE(x)/S(x) ≤ MSE(x ′)/S(x ′)
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Case study: modelling a perturbed thymocyte dynamics

Various comparison rules

x is considered better than x ′ if one condition is satisfied

Rule C:

S(x) > 0 and S(x ′) = 0

S(x) = 0, S(x ′) = 0 and MSE(x) ≤ MSE(x ′)

S(x) 6= 0, S(x ′) 6= 0 and MSE(x)/S(x) ≤ MSE(x ′)/S(x ′).
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Case study: modelling a perturbed thymocyte dynamics

Various comparison rules

x is considered better than x ′ if one condition is satisfied

Rule D (S interpreted as a probability that the constraint is satisfied):

U1 ≤ S(x) and U2 > S(x ′);

U1 > S(x) and U2 > S(x ′) and MSE(x) ≤ MSE(x ′);

U1 ≤ S(x) and U2 ≤ S(x ′) and MSE(x)/S(x) ≤ MSE(x ′)/S(x ′)

(U1 and U2 are random values uniformly distributed on [0, 1])

Rule E (inspired by stochastic ranking):

S(x) ≥ θ, S(x ′) ≥ θ and MSE(x) < MSE(x ′)

U < Pf , S(x)S(x ′) 6= 0, MSE(x)/S(x) < MSE(x ′)/S(x ′)

S(x) ≥ S(x ′)
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Case study: modelling a perturbed thymocyte dynamics

Evolutionary search
Initialization: xi = U(ai , bi), i = 1,m
while 〈 NOT termination 〉 do

Mutation:

yi = xr1 + F · (xr2 − xr3), i = 1,m

Crossover:

z j
i =

{

y j
i if rand(0, 1) < CR or j = j0

x j
i otherwise

,

i = 1,m, j = 1, n

Selection:

xi(g+1) =
{

zi if f (zi) ≤ f (xi(g))
x j

i if f (zi) > f (xi(g))

Differential Evolution [Storn&Price,

1995]

r1

r2

r3

Target 

element

Base element

Trial

element

Difference

vector

-4 -2 0 2 4

-4

-2

0

2

4

m - population size
F ∈ (0, 2) - scale factor
CR ∈ [0, 1] - crossover rate
j0 - randomly selected
component
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Case study: modelling a perturbed thymocyte dynamics

Evolutionary search

JADE algorithm [Zhang&Sanderson, 2009]:

self-adaptive version of Differential Evolution

z l
i =

{

x l
i + Fi · (x l

rbest − x l
i ) + Fi · (x l

r1 − x l
r2) if rand() ≤ CRi

x l
i otherwise

JADE particularities

xrbest chosen from the p% best elements in the population

xr2 chosen from an archive consisting of elements discarded by
selection

Fi generated using a Gaussian distribution

CRi generated using a Cauchy distribution

the parameters of these distributions are adjusted during the
evolutionary process
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Case study: modelling a perturbed thymocyte dynamics

Numerical experiments

Experimental dataset:
232 values (number of cells in
each of the four thymocyte
populations)
collected from young and adult
mice thymus either before or after
a treatment administration

number of parameters: k = 71

number of constraints: q = 26

number of independent runs: 30

JADE parameters:

population size: 20

generations: 5000

percent of best
elements: p = 10%
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Case study: modelling a perturbed thymocyte dynamics

Comparison between ranking rules

Quality of fit (MSE), constraints satisfaction degree (S), estimated
feasibility probability (FP(θ) for θ = 0.99).

Rule MSE S FP(θ)

A (θ = 1) 0.0338 ± 0.0012 1 ± 0 1
A (θ = 0.99) 0.0270 ± 0.0010 0.9966 ± 0.0033 1
B (θ = 0.99) 0.0268 ± 0.0014 0.9999 ± 5 · 10−6 1
C 0.0261 ± 0.0009 0.9878 ± 0.0119 0.45
D 0.0290 ± 0.0017 0.9999 ± 3 · 10−6 1
E (Pf = 0.45) 0.0250 ± 0.0005 0.9935 ± 0.0011 1
Unconstrained 0.0208 ± 0.0022 0.0468 ± 0.0776 0

Remark: Rule E is better than the other ones (Mann-Whitney statistical
test, p-value< 10−5)
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Case study: modelling a perturbed thymocyte dynamics

Simulated dynamics
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Case study: modelling a perturbed thymocyte dynamics

Simulated dynamics
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Case study: modelling a perturbed thymocyte dynamics

Perturbed rates
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Case study: modelling a perturbed thymocyte dynamics

Perturbed rates

r4+ΞHCr4;tL
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Case study: modelling a perturbed thymocyte dynamics

A multi-stage model

[Thomas-Vaslin et al., 2008]

the proliferation process
consists of several stages

differentiation arises at each
stage but with different rates

used to model the impact of
ganciclovir on thymus
dynamics (when continuously
administrated for 7 days)

perturbation modelled by
triggering off the proliferation
process
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Case study: modelling a perturbed thymocyte dynamics

A multi-stage model

Ṅ0(t) = σN − (rN + dN)N0(t)
Ṅi(t) = 2γ(t)rNNi−1(t)− (rN + dN + µN(i))Ni(t), i = 1, nN

Ṗ0(t) =
∑nN

i=1 µN(i)Ni(t) + 2γ(t)rNNnN (t)− (rP + dP)P0(t)
Ṗi(t) = 2γ(t)rPPi−1(t)− (rP + dP + µP(i))Pi(t), i = 1, nP − 1
ṖnP (t) =

∑nP−1
i=1 µP(i)Pi(t) + 2γ(t)rPPnP−1(t)− µLPPnP (t)

Parameters to be estimated

Proliferation rates: rN , rP , r4 and r8

Death rates: dN , dP , d4 and d8

Transfer rates: µN(i) = (αN · i)n, µP(i) = (αP · i)n, µLP ,
e4(i) = (αe4 · i)n and e8(i) = (αe8 · i)n

Number of stages: nN , nP
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Case study: modelling a perturbed thymocyte dynamics

A multi-stage model

Ṁ40(t) = α4µLPPnP (t)− (r4 + d4)M40(t)
Ṁ4i(t) = 2γ(t)r4M4,i−1(t)− (r4 + d4 + e4(i))M4i(t), i = 1, n4 − 1
Ṁ4n4(t) = 2γ(t)r4M4,n4−1(t)− (d4 + e4(n4))M4n4(t)

Ṁ80(t) = α8µLPPnP (t)− (r8 + d8)M80(t)
Ṁ8i(t) = 2γ(t)r8M8,i−1(t)− (r8 + d8 + e(i))M8i(t), i = 1, n8 − 1
Ṁ8n8(t) = 2γ(t)r8M8,n8−1(t)− (d8 + e8(n8))M8n8(t)

Parameters to be estimated
Proliferation rates: rN , rP , r4 and r8

Death rates: dN , dP , d4 and d8.
Transfer rates: µN(i) = (αN · i)n, µP(i) = (αP · i)n, µLP ,
e4(i) = (αe4 · i)n and e8(i) = (αe8 · i)n

Number of stages: n4, n8
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Case study: modelling a perturbed thymocyte dynamics

A multi-stage model

On/off proliferation control

γ(t) =
{

0 if t < τ0

1 if t ≥ τ0

Continuous inhibition function

γ(t) =
{

exp(−δ0t) if t < τ0

1/(1 + exp(−δ1(t − τ1))) if t ≥ τ0

τ0 is estimated

exponential decrease of the proliferation rate and logistic growth of
the proliferation rate

different parameters for different populations
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Case study: modelling a perturbed thymocyte dynamics

A multi-stage model
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Case study: modelling a perturbed thymocyte dynamics

A multi-stage model
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Exploring the output of the evolutionary search

Outline

1 Some problems requiring parameter estimation

2 Constrained evolutionary search of the parameter space

3 Case study: modelling a perturbed thymocyte dynamics

4 Exploring the output of the evolutionary search
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Exploring the output of the evolutionary search

Exploring the output of the evolutionary search
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Evolved solutions of similar quality (MSE = 0.029 ± 0.002)
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Exploring the output of the evolutionary search

Exploring the output of the evolutionary search
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The evolved parameter values can be used to obtain information on
the distribution of parameters
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Exploring the output of the evolutionary search

Summary

in the case of ”semi-transparent” or ”opaque” models, estimating
the parameters can lead to difficult constrained optimization
problems

for some real problems it is not easy the check if a constraint
involving the parameters is satisfied or not; estimating a constraint
satisfaction degree could be useful

combining the MSE value with the constraint satisfaction degree
could be beneficial

an evolutionary search for parameters can provide several
possible solutions =⇒ information about the distribution of
parameters
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Exploring the output of the evolutionary search

Invitation to Timisoara - Romania

... at the High Performance Research Center (http://hpc.uvt.ro)
hybrid CPU+GPU cluster (450 cores, 7 Nvidia Tesla based blades,
40Gbps Infiniband, 750 GB RAM, 30TB storage)
IBM BlueGene/P (4096 cores, 11.7 Tflops, 4TB RAM, 28TB
storage)

... open acces offered through FP7-REGPOT project HOST
(http://host.hpc.uvt.ro)
... current research topics

Cloud computing technologies for HPC service exposure
Scheduling algorithms and techniques
Parallel computing in remote data processing
Large scale numerical computations
HPC-based intelligent services
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Exploring the output of the evolutionary search

Invitation to Timisoara - Romania

... at SYNASC 2013 - 15th Symposium on Symbolic and Numeric
Algorithms for Scientific Computation - 23-26 September 2013
(http://synasc13.info.uvt.ro)

Program chair: Nikolaj Bjorner,
Microsoft Research
Tracks:

Symbolic Computation

Numeric Computing

Logic and Programming

Distributed Computing

Artificial Intelligence

Advances in the Theory of
Computing

Invited speakers

Ivona Brandic, Vienna
University of Technology

Gabriel Ciobanu, Romanian
Academy, Iasi

Leonardo de Moura, Microsoft
Research, USA

Grigore Rosu, University of
Illinois at Urbana-Champaign

Dan Simovici, University of
Massachusetts, Boston
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Exploring the output of the evolutionary search

Invitation to Timisoara - Romania

... at SYNASC 2013 - 15th Symposium on Symbolic and Numeric
Algorithms for Scientific Computation - 23-26 September 2013
(http://synasc13.info.uvt.ro)
Workshops:

ACSys: Agents for Complex Systems

NCA: Natural Computing and Applications

HPCSP: High Performance Computing for Scientific Problems

MICAS: Management of Resources in Sky and Cloud Computing

IAFP: Iterative Approximation of Fixed Points

Submission deadline for workshops: 15-30 July 2013 (depending on
the workshop)
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