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What is Differential Evolution (DE) ?

" Differential Evolution” as a keyword

Ten years ago ...

@ Biology, medicine: evolution process leading to the differentiation of cell
types, e.g. less specialized cells become more specialized

@ Mathematics: differential evolution relates to a class of differential equations
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What is Differential Evolution (DE) ?

" Differential Evolution” as a keyword

Ten years ago ...

@ Biology, medicine: evolution process leading to the differentiation of cell
types, e.g. less specialized cells become more specialized

@ Mathematics: differential evolution relates to a class of differential equations
Now ...

@ Computer science: population based search method which uses as main
source of variation differences between randomly selected elements

@ no differential calculus is involved
o just differences between vectors
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What is Differential Evolution (DE) ?

Roots of Differential Evolution

@ developed in 1995 by Rainer Storn and Kenneth Price as a continuous
optimization method

@ starting problem: Chebyshev polynomials fitting (33 variables)
@ starting variant: genetic annealing algorithm developed by Kenneth
Price (1994)
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What is Differential Evolution (DE) ?

Roots of Differential Evolution

@ developed in 1995 by Rainer Storn and Kenneth Price as a continuous
optimization method

@ starting problem: Chebyshev polynomials fitting (33 variables)

@ starting variant: genetic annealing algorithm developed by Kenneth
Price (1994)

@ main idea: use a mutation/recombination operator based on difference(s)
between pairs of elements

@ similarities with older direct search methods:
@ pattern search (Hooke-Jeeves, 1961)
@ simplex methods (Nelder-Mead, 1965)
@ other population based methods involving differences:
@ Particle Swarm Optimization (Kennedy & Eberhart 1995)

DE webpage http://www.icsi.berkeley.edu/ storn/code.html
Books:
K.V. Price, R.M. Storn, J.A. Lampinen; Differential Evolution. A Practical Approach to Global Optimization, 2005

U. Chakraborty, Advances in Differential Evolution, 2008
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What is Differential Evolution (DE) ?

Roots of Differential Evolution

Why using differences?

=
T

@ a difference specifies a direction of
change of

@ scaling the difference allows to
control the amount of change

Example: pattern search (Hooke-Jeeves) -|
Explore:

Xe = Xolg + hx d f(Xe) < f(Xo/d)

de{-1,0,1}"
Enhance:

Xnew = Xe"’(xe_xo/d) f(X"eW) < f(Xe)
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What is Differential Evolution (DE) ?

Roots of Differential Evolution

Why using differences?

=
T

@ a difference specifies a direction of
change of

@ scaling the difference allows to
control the amount of change

|
~
T

Example: pattern search (Hooke-Jeeves)
Explore:

L
IS
T

. ; f
-4 -2 0 2 4

Xe = Xoid + h+ d F(xe) < f(xoi) Usage of differences:

n @ Pattern search, Nelder-Mead:
d€{-1,0,1} difference directed toward better
Enhance: elements

@ DE: randomly constructed
differences
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What is Differential Evolution (DE) ?

Standard Differential Evolution

Problem to be solved: minimize f : [a1, bi] X ... X [an, bn] = R

Initialization: x; = U(a;, b;), i=1,m

m - population size
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What is Differential Evolution (DE) ?

Standard Differential Evolution

Problem to be solved: minimize f : [a1, bi] X ... X [an, bn] = R

Initialization: x; = U(a;, b;), i=1m

while ( NOT termination ) do

)

»
T

@ Mutation: of

yi:Xr1+F'(Xr2_Xr3)7 ’:17

3

m - population size
F € (0,2) - scale factor
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What is Differential Evolution (DE) ?

Standard Differential Evolution

Problem to be solved: minimize f : [a1, bi] X ... X [an, bn] = R

Initialization: x; = U(a;, b;), i=1,m
while ( NOT termination ) do

»

@ Mutation: 2p 7 0/ 1
Yi=Xq +F (X, — %), i=1,m of ]
A§\4 ) o 2 5%7

m - population size
F € (0,2) - scale factor
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What is Differential Evolution (DE) ?

Standard Differential Evolution

Problem to be solved: minimize f : [a1, bi] X ... X [an, bn] = R

Initialization: x; = U(a;, b;), i=1m

) 7 / ‘ ‘ ’ TN

while ( NOT termination ) do % |
@ Mutation: L 0/ ]
y;:x,1—|-F.(x,2 —X,«3)7 [:]_7m ol ; \ ]

»

N

@ Crossover: 2l o Pyt
- /" if rand(0,1) < CRorj=jo .| ]
Jod v v
! { x!  otherwise ’ }\\ - & Z

m - population size
F € (0,2) - scale factor
CR € (0,1) - crossover rate

i=1,mj=1n
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What is Differential Evolution (DE) ?

Standard Differential Evolution

Problem to be solved: minimize f : [a1, bi] X ... X [an, bn] = R

Initialization: x; = U(a;, b;), i=1,m

, N

while ( NOT termination ) do %/ 7
@ Mutation: 3 0/ 1
yi:Xr1+F'(sz _Xr3)7 i=1m °or ; o 1

»

N

@ Crossover: ol o <
; /' if rand(0,1) < CRor j=Jjo [ ]
7= v i ’
' { x!  otherwise ’ \&\ : : Z

m - population size
F € (0,2) - scale factor
@ Selection: CR € (0,1) - crossover rate

[z iff(z) < f(xi(g))
xi(g +1) = { Xl if f(z) > f(xi(g))
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Why is DE popular?
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9 Why is DE popular?
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Why is DE popular?
Popularity
Common statements in DE papers:

@ "Differential evolution is arguably one of the hottest topics in today's
computational intelligence research.” [Chakraborty - Advances in DE, 2008]

@ "Since 1997 we have witnessed explosive growth in differential evolution
research.” [Qing, 2009]

@ "DE is a simple and efficient optimizer” [Neri, Tirronen, 2010]

@ "Differential evolution (DE) is arguably one of the most powerful stochastic
real-parameter optimization algorithms in current use.” [Das, Suganthan, 2011 - DE

Survey]

Keywords:
@ simple: can be implemented in a few lines of code
@ powerful: flexible structure = can be applied for a large class of problems

@ efficient: estimation of optima with an acceptable cost
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Why is DE popular?

Flexibility

Various combinations of mutation and crossover variants

DE taxonomy: ‘DE/ base element/ no. of differences/ crossover type

@ Base element:

@ random(x, ): DE/rand/*/*

@ best (x.): DE/best/*/*

@ combination of current and best elements (Ax, + (1 — A)x;):
DE/current-to-best/* /*

@ combination of random and best elements (Ax, + (1 — A)xy,):
DE/rand-to-best/* /*

@ combination of current and random elements (Ax; + (1 — \)x;,):

DE/current-to-rand/* /*
@ Number of differences: usually 1 (DE/*/1/*) or 2 (DE/*/2/*)
@ Crossover type: binomial: DE/*/* /bin, exponential: DE/*/* /exp)
At least 20 DE variants ...
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Why is DE popular?

Flexibility

Mutation variants

DE/rand/L/*

L
Yi=Xn + Z Fi - (Xn(y — Xn@))
I=1

Typical variant: L =2
A\ Allows to define new mutant directions =
increased diversity

DE/current-to-best/1

YVi=(1=A)x+ M+ F - (x4 — Xp,) !
A Introduces a bias toward the currently best | .. b

element
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Why is DE popular?

Flexibility

Crossover variants

Binomial (DE/*/* /bin)

S y,/ if rand(0,1) < CRor j = jo
" %} otherwise

,  i=Lmj=Tn

Remark: similar to uniform crossover

Exponential (DE/*/*/exp)

7i:17m’.j:17n

ZJ_{ yl - forj € {jo. o+ Lmr- - (o + K — 1)}

i x!  otherwise

Remark: similar to cut points crossover
CR € ]0,1] - crossover rate, jo ~ U({1,...,m}), K ~ Geom(CR)
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Why is DE popular?

Flexibility

Other recombination variants

Arithmetical (DE/*/* /arithmetical)

Zi = (].—q)X,'—|—C]y,'7 i=1,m, qc [0, 1]

Either mutation or recombination
(DE/either-or)

X, +F (X, — x5,) if rand(0,1) < pg
Zi = Xn +K - (sz - Xfl)
+K - (x, — x,) if rand(0,1) > pg

Remark: DE/either-or was created to
compensate the lack of rotational invariance of
DE involving binomial crossover

D. Zaharie (UVT) Differential Evolution
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Why is DE popular?
Flexibility

(Self)adaptive variants

The other face of flexibility: which variant to choose ?
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Why is DE popular?

Flexibility

(Self)adaptive variants

The other face of flexibility: which variant to choose ?

Recommendations

@ no specific knowledge on the problem: use DE/rand/1/*

©

need for an exploitative method: use DE/best/1/*

(]

need for a more explorative method: use DE/rand/2/*

need for a rotationally invariant method: use DE/either-or

Remark: different variants could be appropriate in different stages of the
optimization process
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Why is DE popular?

Flexibility

(Self)adaptive variants

The other face of flexibility: which variant to choose ?

Self adaptation

)

o

)

use a pool of variants and assign to each element a DE variant
record the success of the variant attached to each element

decide which variant to select based on the success/failure information (a
probability distribution is usually constructed)

self-adaptation of mutation/crossover is usually combined with
self-adaptation of parameters

Examples: SaDE [Qin, Huang & Suganthan, 2000], EPSDE [Maliipedi et al., 2011], Competitive
DE [Twrdik, 2009] etc.
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Why is DE popular?

Flexibility

Extensions to other search spaces: binary, discrete, permutations

Simplest variant: use classical DE operators to evolve vectors with components

belonging to a continuous domain and decode the vectors only during the
evaluation step

@ Binary and discrete values
@ Search domain: [0,1]” or [min(D), max(D)]";
@ Decoding: x; — round(x;)
@ Example: (0.3,0.7,0.2) — (0,1,0)

@ Remark: used in various applications (e.g. engineering design, rules
mining, gramatical differential evolution)
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Why is DE popular?

Flexibility

Extensions to other search spaces: binary, discrete, permutations

Simplest variant: use classical DE operators to evolve vectors with components

belonging to a continuous domain and decode the vectors only during the
evaluation step

@ Binary and discrete values
@ Search domain: [0,1]” or [min(D), max(D)]";
@ Decoding: x; — round(x;)
@ Example: (0.3,0.7,0.2) — (0,1,0)
@ Remark: used in various applications (e.g. engineering design, rules
mining, gramatical differential evolution)

@ Permutations

@ Search domain: [a, b]";

@ Decoding: (x1,x2,...,x,) — (rank(xy), rank(x2), ..., rank(x,))
o Example: (0.3,0.7,0.2) — (2,3,1)
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Why is DE popular?

Flexibility

Extensions to other search spaces: binary, discrete, permutations

Another variant: exploit the idea of difference-based mutation by defining
@ Binary values

y,-j _ { 1—x)  ifx), #x) orrand(0,1) < F

X} otherwise

Remark: this is the restricted-change DE mutation proposed in [Gong and Tuson,
2006]
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Why is DE popular?

Flexibility
Extensions to other search spaces: binary, discrete, permutations
Another variant: exploit the idea of difference-based mutation by defining
@ Binary values
yi— 1- xi o if X ;é'x{S or rand(0,1) < F
! X}, otherwise

Remark: this is the restricted-change DE mutation proposed in [Gong and Tuson,
2006]

@ Permutation like encoding

@ Step 1: compute the Ulam distance dy between x,, and x,3 (minimal
number of " Delete-Shift-Insert” operations)

@ Step 2: apply dy random inversions to x;,

e Example: x, =(1,2,3,4,5), x,, = (1,2,4,3,5), x,3 = (3,2,1,4,5)
dU(Xr27Xf3) =
(1,2,3,4,5) — (3,2,1,4,5) < (3,2,1,5,4) — (5,2,1,3,4)

Remark: variant used in scheduling problems [Talukder et al., 2009])
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Why is DE popular?

Flexibility

Extensions to various classes of problems

DE has been successfully adapted for various classes of problems:

@ Multi-objective optimization: PDE (Pareto DE), GDE (Generalized DE),
MOEA/D (decomposition based MOEA)

@ Multi-modal optimization: SDE (Sharing DE), CDE (Crowding DE)
@ Dynamic optimization: DynDE, jDEdyn
Main ideas:
@ keep the DE mutation as main variation operator
@ adapt the selection process

@ use of specific mechanisms: crowding, aging, randomness injection, archiving
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What do we know about DE behaviour ?

Outline

e What do we know about DE behaviour ?
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What do we know about DE behaviour ?

Current Knowledge on DE Behavior

Mainly based on empirical parameter studies which lead to rules of thumb as:

@ for the same crossover rate (CR), the number of components taken from the
mutant is highly depending on the crossover type (binomial vs. exponential)
. why 7

@ the control parameters (m, F, CR) influence in an interrelated manner the
population diversity ... how ?

@ high values of the scale factor, F, are needed to avoid premature
convergence ... does there exist a lower bound 7

@ a good empirical choice of parameters in DE/either-or is K = (F +1)/2 ...
why ?
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What do we know about DE behaviour ?

Binomial vs. Exponential Crossover

Binomial crossover: Exponential crossover:

@ the probability to take a component @ the probability to take a component

from the mutant vector is: from the mutant vector is:
cr(1 1 1 _ 1-CR"
Pm = “n) 7t Pm = 1 — CR)
@ the number of mutated @ the number of mutated
components: binomial distribution components: truncated geometric
distribution

Pm

Remark: In the case of exponential
crossover larger values of CR should be
used in order to have the same number
of mutated components as for binomial
CrOSSOVer [Zaharie, 2007].

1/'Bi noni al crossover

D. Zaharie (UVT) Differential Evolution 21.06.2012 24 / 48



What do we know about DE behaviour ?

Choice of crossover rate

@ the DE behavior is influenced by the mutation probability, p,, but the user
provide a value for CR

@ what value should have CR in order to ensure a given value for p,, ?

Binomial crossover Exponential crossover

m—1
CR = p171//nn C/R?"—nmeR—anm—l:O
R 1.0

101

0.8F 08

0.6
06
n=500

04r / n=10

02

N

0.0 P 0. . . . . A
05 oa o8 o8 oM 0.0 0.2 04 06 08 1.0

Pract|cal remark: Exponential crossover is more sensitive to the problem size
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What do we know about DE behaviour ?

Population diversity

Importance

@ small diversity in the DE population = small values of the differences =
limited progress = premature convergence

@ diversity measure: population variance (component level)

7 7

Question: What is the impact of mutation and crossover on the population
variance 7
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What do we know about DE behaviour ?

Population diversity

Theoretical results

Var(X)=variance of current population (at component level);
E(Var(Z))=expected variance of the trial population

DE/rand/L/*

[Zaharie, 2002]

a 2
E(Var(Z)) = <1 +2pm > F7 — p’”(p’")> Var(X)

m
=1
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What do we know about DE behaviour ?

Population diversity

Theoretical results

Var(X)=variance of current population (at component level);
E(Var(Z))=expected variance of the trial population

DE/rand/L/*

[Zaharie, 2002]

a 2
E(Var(Z)) = <1 +2pm > F7 — p’"(p’")> Var(X)

m
I=1

DE/random-to-best/1/*

[Zaharie, 2008]

E(Var(Z)) = (1+2pnF? — 2ol2ienl = jp2 mo1) Var(X)

+)\2 pm(ln:Pm) Z,(n:l(x* _ X’_)z

D. Zaharie (UVT) Differential Evolution 21.06.2012

27 / 48



What do we know about DE behaviour ?

Population diversity

Theoretical results

Var(X)=variance of current population (at component level);
E(Var(Z))=expected variance of the trial population

DE/current-to-rand/1

(arithmetical recombination) [zaharie, 2008]

2m —

E(Var(2)) = (1 +2F2 —2q + L q2> Var(X)
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What do we know about DE behaviour ?

Population diversity

Theoretical results

Var(X)=variance of current population (at component level);
E(Var(Z))=expected variance of the trial population

DE/current-to-rand/1

(arithmetical recombination) [zaharie, 2008]

2m—1
E(Var(Z)) = (1 2R —2q+ q2> Var(X)
DE /either-or
[Zaharie, 2012]
E(Var(2) = (pR(1+2F2 — 1)+ 2pe(1 - pe)(Z5t + F2 + 3K2 — 2K)

+(1— pr)? (2L 4+ 222(3K2 — 2K))) Var(X)
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What do we know about DE behaviour ?

Population diversity

Theoretical vs empirical evolution

@ Evolution of population variance after mutation and crossover (no selection)

@ Practical remark: the population variance can decrease even in the absence
of selection pressure

E(Va(2)) Va(2)>
5r 5r
F=0.

0

0 20 40 60 80 100

DE /either-or
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What do we know about DE behaviour ?

Population diversity

From theory to practical insights

E(Var(Z2)) = c(F, CR, pg, q, m, n)Var(X)
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What do we know about DE behaviour ?

Population diversity

From theory to practical insights

E(Var(Z2)) = c(F, CR, pg, q, m, n)Var(X)

o if ¢(F, CR, pr,q,m,n) <1 the algorithm will probably prematurely converge
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Population diversity
From theory to practical insights

E(Var(Z2)) = c(F, CR, pg, q, m, n)Var(X)

o if ¢(F, CR, pr,q,m,n) <1 the algorithm will probably prematurely converge

@ one can control the impact which mutation and crossover have on the
population variance by changing the values of the parameters involved in the

factor ¢
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What do we know about DE behaviour ?

Population diversity
From theory to practical insights

E(Var(Z2)) = c(F, CR, pg, q, m, n)Var(X)

o if ¢(F, CR, pr,q,m,n) <1 the algorithm will probably prematurely converge

@ one can control the impact which mutation and crossover have on the
population variance by changing the values of the parameters involved in the
factor ¢

@ this is a particularity of DE, as in EAs using mutation based additive
perturbation involving an arbitrary distribution:

E(Var(Z)) = aVar(X)+ b

with b not necessarily zero
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What do we know about DE behaviour ?

Population diversity

From theory to practical insights

E(Var(Z2)) = c¢(F, CR, pr, q, m, n) Var(X)

@ the value of ¢(F, CR, pg,q, m,n) is
highly influenced by the type of
mutation and crossover

20

DE/either-or P g /
PF=0.5 ~a
" DErand/1/bin

151

DE/rand/1/exp
05 - DE/current-to-rand CR=0.9
9=05 m=100, n=100
00 ‘ ‘ ‘ ‘ CE
00 02 04 06 08 10

D. Zaharie (UVT)

25
DFE/either-or, pF=0.5
20} e
DE/current-to-rand, q:oéA
15+ —
DE/rand/Ubin, CR=05""
10 f-mmm o 7 ——————————————————
DE/rand/1/exp
05 F=0.75
n=100
00 . . . ! ' m
20 40 60 80 100
25¢ DE/either-or
A
20F
DE/rand/1/bin
10 === T W o o -
DE/rand/1/exp
o5}
0.0 . . . . | CRq,pF
0.0 0.2 04 06 08 10 P
21.06.2012 31 /48
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What do we know about DE behaviour ?

Population diversity

Avoiding premature convergence

@ choose the DE control parameters (F, CR, m etc) such that the population

diversity does not decrease too fast (c(CR, F,q,m,n) > 1)

@ by solving ¢(F, CR, pr,q,m,n) =1 we can find a lower bound for F under
which the population decreases even in the absence of selection

F\cw
0351
DE/rand/L/bin
030
m=10
025
N
0200
015F =30
005} X me100
- hmEw
N m=500
0.00 ‘ ‘ ‘ ‘ ‘
00 02 04 06 08 10

DE/rand/1/bin

D. Zaharie (UVT)

CR

F\uw
035
DE/rand/1/exp ng\
030
025 0
05F %
010 %
=100
005}
- m=500
000 ‘ ‘ ‘ ‘ ' R
00 02 04 06 08 10
DE/rand/1/exp
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What do we know about DE behaviour ?

Population diversity

Avoiding premature convergence

@ choose the DE control parameters (F, CR, m etc) such that the population
diversity does not decrease too fast (c(CR, F,q,m,n) > 1)

@ by solving ¢(F, CR, pr,q,m,n) =1 we can find a lower bound for F under
which the population decreases even in the absence of selection
Flow Flow

06 04
DE/current-to-rand

05
03
o4 DE/either-or
03 02r
02
01r
01
00 ‘ ‘ ‘ ‘ g 00 ‘ ‘ ‘ ‘ o
0.0 02 04 0.6 08 10 0.0 0.2 04 0.6 08 10
DE/current-to-rand DE/either-or
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What do we know about DE behaviour ?

Population diversity
Avoiding premature convergence

Example:

@ DE/rand/1/bin for Neumaier fct,
n=2

@ m=20,CR=09, F=0.2
@ lower bound Fj,, = 0.23

gen=1




Population diversity
Avoiding premature convergence

Example:
@ DE/rand/1/bin for Neumaier fct,

n=2
@ m=20,CR=0.9, F=0.5
@ lower bound Fj,, = 0.23

Differential Evolution



What do we know about DE behaviour ?

Population diversity

Avoiding premature convergence

@ the knowledge of lower bound is particularly important for small populations

@ successfull usage of the lower bound: variant of jDE [grest et al. 2006] adapted for
Dynamic Optimization Problems (winner of CEC 2009 competition)

@ in static jDE the parameter F is sampled from [0.1,0.9]
@ in dynamic jDE the parameter F is sampled from [0.36, 0.9]
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What do we know about DE behaviour ?

Population diversity

Explaining empirical rules

@ Rule of thumb for DE/either-or: K = (F +1)/2

@ When K = (F + 1)/2 the variance evolution is not sensitive to pg

c(m,F,K,pF) K
101

14

DE/either-or pF=0.1 DE/either-or

12

F=08
10
6
0.8
4 0.6
04f K=(F+1)/2
2
021
pF=0.1
0 L K 00 F
0.0 05 10 15 20 0.0 05 10 15 20
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What do we know about DE behaviour ?

Differential Evolution without differences ?

Question: can the DE behaviour be reproduced by mechanisms which do not
involve differences?

Mimicking the distribution of DE trial population

@ Use a Gamma-like probability distribution to generate trial vectors [ai& Fatti,
2006]

@ Advantage: all trial vectors are in the search domain (no repairing rule is
needed)

@ Disadvantage: more complicated than DE

Mimicking the DE trial population variance

@ Variance-based mutation (zaharie, 200g]
yi=n+&, &~N(0,0) o®=FVar(X/)12;

@ E(Var(Z)) = (14 p2F?>— M)Var(X) - as in the case of DE/rand/1/*

@ however, the performance is not identical

v
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What do we know about DE behaviour ?

Variance Based Mutation - Numerical Results

CR F DE/rand/1/bin var/bin
(f*) Success (f*) Success
stdev(f*) (nfe) stdev(f*)  (nfe)
0.1 05 9-107° 30/30 9-10°° 30/30
+10-10 (380416) +10-10 (190290)
05 05 10~* 0/30 9-107° 30/30
+107° (500000) +10-10 (204703)
09 05 0.0078 18/30 1.27-107% 27/30
+£0.0125  (306933)  +£10-® (470792)
01 0.2 9-107° 30/30 0.0158 24/30
+2-10710  (137090) 0.0318 (131887)
05 0.2 0.0959 18/30 1.3469 0/30
+0.1657 (87666) 1.5373 (500000)

Test function: f(x1, ..., %) = g955 211 X7 — [1j=1 cos(xj/v/n) + 1 (Griewank,
n=100)
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Which problems are particularly difficult for standard DE ?

Outline

0 Which problems are particularly difficult for standard DE 7

D. Zaharie (UVT) Differential Evolution 21.06.2012 40 / 48



Which problems are particularly difficult for standard DE ?

Non-separable problems

@ Separable functions:

argming, ...y f (X1, %2, ..., xn) = (argminy f(x1, %, ..., %), argming f (*,xa, . ...

o Example (additively separable): f(xi,x2,...,Xa) = > 1 fi(x;)
o DE with small values of CR (e.g. CR < 2) explores the separability

@ Nonseparable functions: the variables are correlated

@ Example: by a rotation of the axes a separable problem can become
nonseparable
o DE is rotationally invariant only when CR =1 (only mutation)
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Which problems are particularly difficult for standard DE ?

Non-separable problems

@ using only mutation = reduces the number of trial vectors = stagnation
e DE/rand/1/bin: when CR =1 there are (m — 1)(m — 2) possible trial
vectors instead of (m —1)(m —2)(2" — 1)
@ Idea: use of "recombination differentials” (differences involving the current
element x;)
o DE/either-or [price, 2005], drift free DE [price, 2008]

Lol x + F - (X1 — x2) if rnd < pf
"7 x5+ K- (%3 — x4 — 2x;) otherwise

o Combinatorial Differential Evolution firio, Li, 2008] - alternatively applies:

z{_{XJ (X‘i )|frnd<05

xJ
= xi+ F (% — x, j
zi=xi+F-(xi—x) x4+ F-(x — le) otherwise

when f(x;) < f(x,)
Remark. Not strict rotationally invariant but generates new trial
vectors around the current one
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Which problems are particularly difficult for standard DE ?

High-dimensional problems

@ the problem size influences directly the relationship between p,, and CR
(especially for exponential crossover)

@ CR values tuned for small size problems are not necessarily good for
large size problems

@ Most non hybrid DE variants are based on cooperative coevolution which
split the problem into smaller sub-problems:

@ a potential solution consists of several components

@ evolve independently the population corresponding to each component
(coevolution)

@ each component is evaluated in the context of other components
(cooperation)
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Which problems are particularly difficult for standard DE ?

Noisy problems

@ standard DE behaves rather poor for noisy optimization problems

@ Cause: the difference based mutation does not ensure enough level of
randomness

@ Solution: increase the level of randomness

@ random control parameters (F and CR)

@ extend the pool of perturbations (e.g. opposition based DE)
@ hybridization
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Which problems are particularly difficult for standard DE ?

Conclusions

@ DE should be in the "bag of tools” of practitioners, but ...
@ attention should be paid on the choice of variant and parameters

@ use the existing theoretical results to collect useful practical insights
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