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What is Differential Evolution (DE) ?

”Differential Evolution” as a keyword

Ten years ago ...

Biology, medicine: evolution process leading to the differentiation of cell
types, e.g. less specialized cells become more specialized

Mathematics: differential evolution relates to a class of differential equations

Now ...

Computer science: population based search method which uses as main
source of variation differences between randomly selected elements

no differential calculus is involved
just differences between vectors
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What is Differential Evolution (DE) ?

Roots of Differential Evolution

developed in 1995 by Rainer Storn and Kenneth Price as a continuous
optimization method

starting problem: Chebyshev polynomials fitting (33 variables)
starting variant: genetic annealing algorithm developed by Kenneth
Price (1994)

main idea: use a mutation/recombination operator based on difference(s)
between pairs of elements

similarities with older direct search methods:

pattern search (Hooke-Jeeves, 1961)
simplex methods (Nelder-Mead, 1965)

other population based methods involving differences:

Particle Swarm Optimization (Kennedy & Eberhart 1995)

DE webpage http://www.icsi.berkeley.edu/ storn/code.html
Books:
K.V. Price, R.M. Storn, J.A. Lampinen; Differential Evolution. A Practical Approach to Global Optimization, 2005

U. Chakraborty, Advances in Differential Evolution, 2008
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What is Differential Evolution (DE) ?

Roots of Differential Evolution

Why using differences?

a difference specifies a direction of
change

scaling the difference allows to
control the amount of change

Example: pattern search (Hooke-Jeeves)
Explore:

xe = xold + h ∗ d f (xe) < f (xold )

d ∈ {−1, 0, 1}n

Enhance:

xnew = xe+(xe−xold ) f (xnew ) < f (xe)

**
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Usage of differences:

Pattern search, Nelder-Mead:
difference directed toward better
elements

DE: randomly constructed
differences

D. Zaharie (UVT) Differential Evolution 21.06.2012 5 / 48



What is Differential Evolution (DE) ?

Roots of Differential Evolution

Why using differences?

a difference specifies a direction of
change

scaling the difference allows to
control the amount of change

Example: pattern search (Hooke-Jeeves)
Explore:

xe = xold + h ∗ d f (xe) < f (xold )

d ∈ {−1, 0, 1}n

Enhance:

xnew = xe+(xe−xold ) f (xnew ) < f (xe)

**

-4 -2 0 2 4

-4

-2

0

2

4

Usage of differences:

Pattern search, Nelder-Mead:
difference directed toward better
elements

DE: randomly constructed
differences

D. Zaharie (UVT) Differential Evolution 21.06.2012 5 / 48



What is Differential Evolution (DE) ?

Standard Differential Evolution
Problem to be solved: minimize f : [a1, b1]× . . .× [an, bn] → R

Initialization: xi = U(ai , bi ), i = 1,m
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m - population size
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What is Differential Evolution (DE) ?

Standard Differential Evolution
Problem to be solved: minimize f : [a1, b1]× . . .× [an, bn] → R

Initialization: xi = U(ai , bi ), i = 1,m
while 〈 NOT termination 〉 do

Mutation:

yi = xr1 + F · (xr2 − xr3), i = 1,m

r1

r2

r3

Target vector
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m - population size
F ∈ (0, 2) - scale factor
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Why is DE popular?

Popularity

Common statements in DE papers:

”Differential evolution is arguably one of the hottest topics in today’s
computational intelligence research.” [Chakraborty - Advances in DE, 2008]

”Since 1997 we have witnessed explosive growth in differential evolution
research.” [Qing, 2009]

”DE is a simple and efficient optimizer” [Neri, Tirronen, 2010]

”Differential evolution (DE) is arguably one of the most powerful stochastic
real-parameter optimization algorithms in current use.” [Das, Suganthan, 2011 - DE

Survey]

Keywords:

simple: can be implemented in a few lines of code

powerful: flexible structure ⇒ can be applied for a large class of problems

efficient: estimation of optima with an acceptable cost
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Why is DE popular?

Flexibility
Various combinations of mutation and crossover variants

DE taxonomy: DE/ base element/ no. of differences/ crossover type

Base element:

random(xr1): DE/rand/*/*
best (x∗): DE/best/*/*
combination of current and best elements (λx∗ + (1− λ)xi ):
DE/current-to-best/*/*
combination of random and best elements (λx∗ + (1− λ)xr1):
DE/rand-to-best/*/*
combination of current and random elements (λxi + (1− λ)xr1):
DE/current-to-rand/*/*

Number of differences: usually 1 (DE/*/1/*) or 2 (DE/*/2/*)

Crossover type: binomial: DE/*/*/bin, exponential: DE/*/*/exp)

At least 20 DE variants ...
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Why is DE popular?

Flexibility
Mutation variants

DE/rand/L/*

yi = xr1 +
L
∑

l=1

Fl · (xr1(l) − xr2(l))

Typical variant: L = 2
△ Allows to define new mutant directions ⇒
increased diversity

DE/current-to-best/1

yi = (1− λ)xi + λx∗ + F · (xr1 − xr2)

△ Introduces a bias toward the currently best
element
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Why is DE popular?

Flexibility
Crossover variants

Binomial (DE/*/*/bin)

z
j
i =

{

y
j
i if rand(0, 1) < CR or j = j0

x
j
i otherwise

, i = 1,m, j = 1, n

Remark: similar to uniform crossover

Exponential (DE/*/*/exp)

z
j
i =

{

y
j
i for j ∈ {j0, 〈j0 + 1〉n, . . . , 〈j0 + K − 1〉n}
x
j
i otherwise

, i = 1,m, j = 1, n

Remark: similar to cut points crossover
CR ∈ [0, 1] - crossover rate, j0 ∼ U({1, . . . ,m}), K ∼ Geom(CR)

D. Zaharie (UVT) Differential Evolution 21.06.2012 15 / 48



Why is DE popular?

Flexibility
Other recombination variants

Arithmetical (DE/*/*/arithmetical)

zi = (1−q)xi+qyi , i = 1,m, q ∈ [0, 1]

Either mutation or recombination
(DE/either-or)

zi =







xr1 +F · (xr2 − xr3) if rand(0, 1) ≤ pF
xr1 +K · (xr2 − xr1)

+K · (xr3 − xr1) if rand(0, 1) > pF

Remark: DE/either-or was created to
compensate the lack of rotational invariance of
DE involving binomial crossover
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Why is DE popular?

Flexibility
(Self)adaptive variants

The other face of flexibility: which variant to choose ?

Recommendations

no specific knowledge on the problem: use DE/rand/1/*

need for an exploitative method: use DE/best/1/*

need for a more explorative method: use DE/rand/2/*

need for a rotationally invariant method: use DE/either-or

Remark: different variants could be appropriate in different stages of the
optimization process
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Why is DE popular?

Flexibility
(Self)adaptive variants

The other face of flexibility: which variant to choose ?

Self adaptation

use a pool of variants and assign to each element a DE variant

record the success of the variant attached to each element

decide which variant to select based on the success/failure information (a
probability distribution is usually constructed)

self-adaptation of mutation/crossover is usually combined with
self-adaptation of parameters

Examples: SaDE [Qin, Huang & Suganthan, 2009], EPSDE [Mallipedi et al., 2011], Competitive
DE [Tvrdik, 2009] etc.
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Why is DE popular?

Flexibility
Extensions to other search spaces: binary, discrete, permutations

Simplest variant: use classical DE operators to evolve vectors with components
belonging to a continuous domain and decode the vectors only during the
evaluation step

Binary and discrete values

Search domain: [0, 1]n or [min(D),max(D)]n;
Decoding: xi → round(xi )
Example: (0.3, 0.7, 0.2)→ (0, 1, 0)
Remark: used in various applications (e.g. engineering design, rules
mining, gramatical differential evolution)

Permutations

Search domain: [a, b]n;
Decoding: (x1, x2, . . . , xn)→ (rank(x1), rank(x2), . . . , rank(xn))
Example: (0.3, 0.7, 0.2)→ (2, 3, 1)
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Why is DE popular?

Flexibility
Extensions to other search spaces: binary, discrete, permutations

Another variant: exploit the idea of difference-based mutation by defining

Binary values

y
j
i =

{

1− x jr1 if x jr2 6= x jr3 or rand(0, 1) ≤ F

x jr1 otherwise

Remark: this is the restricted-change DE mutation proposed in [Gong and Tuson,

2006]

Permutation like encoding

Step 1: compute the Ulam distance dU between xr2 and xr3 (minimal
number of ”Delete-Shift-Insert” operations)
Step 2: apply dU random inversions to xr1
Example: xr1 = (1, 2, 3, 4, 5), xr2 = (1, 2, 4, 3, 5), xr3 = (3, 2, 1, 4, 5)
dU(xr2 , xr3) = 3,
(1, 2, 3, 4, 5)→ (3, 2, 1, 4, 5)← (3, 2, 1, 5, 4)→ (5, 2, 1, 3, 4)

Remark: variant used in scheduling problems [Talukder et al., 2009])
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Why is DE popular?

Flexibility
Extensions to various classes of problems

DE has been successfully adapted for various classes of problems:

Multi-objective optimization: PDE (Pareto DE), GDE (Generalized DE),
MOEA/D (decomposition based MOEA)

Multi-modal optimization: SDE (Sharing DE), CDE (Crowding DE)

Dynamic optimization: DynDE, jDEdyn

Main ideas:

keep the DE mutation as main variation operator

adapt the selection process

use of specific mechanisms: crowding, aging, randomness injection, archiving
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What do we know about DE behaviour ?
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What do we know about DE behaviour ?

Current Knowledge on DE Behavior

Mainly based on empirical parameter studies which lead to rules of thumb as:

for the same crossover rate (CR), the number of components taken from the
mutant is highly depending on the crossover type (binomial vs. exponential)
... why ?

the control parameters (m, F , CR) influence in an interrelated manner the
population diversity ... how ?

high values of the scale factor, F, are needed to avoid premature
convergence ... does there exist a lower bound ?

a good empirical choice of parameters in DE/either-or is K = (F + 1)/2 ...
why ?
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What do we know about DE behaviour ?

Binomial vs. Exponential Crossover

Binomial crossover:

the probability to take a component
from the mutant vector is:

pm = CR

(

1− 1

n

)

+
1

n

the number of mutated
components: binomial distribution

0.2 0.4 0.6 0.8 1
CR

0.2

0.4

0.6

0.8

1

Pm

n=5

n=10
n=30 n=100

Exponential crossover
Binomial crossover

Exponential crossover:

the probability to take a component
from the mutant vector is:

pm =
1− CRn

n(1− CR)

the number of mutated
components: truncated geometric
distribution

Remark: In the case of exponential
crossover larger values of CR should be
used in order to have the same number
of mutated components as for binomial
crossover [Zaharie, 2007].
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What do we know about DE behaviour ?

Choice of crossover rate

the DE behavior is influenced by the mutation probability, pm, but the user
provide a value for CR

what value should have CR in order to ensure a given value for pm ?

Binomial crossover
CR = pm−1/n

1−1/n

n=10

n=500

0.0 0.2 0.4 0.6 0.8 1.0
pm0.0

0.2

0.4

0.6

0.8

1.0
CR

Exponential crossover
CRn − npmCR + npm − 1 = 0

n=10

n=30
n=50

n=500

n=100

0.0 0.2 0.4 0.6 0.8 1.0
pm0.0

0.2

0.4

0.6

0.8

1.0
CR

Practical remark: Exponential crossover is more sensitive to the problem size
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What do we know about DE behaviour ?

Population diversity
Importance

small diversity in the DE population ⇒ small values of the differences ⇒
limited progress ⇒ premature convergence

diversity measure: population variance (component level)

**

-4 -2 0 2 4

-4

-2

0
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4

**

-4 -2 0 2 4

-4

-2

0
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4

Question: What is the impact of mutation and crossover on the population
variance ?
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What do we know about DE behaviour ?

Population diversity
Theoretical results

Var(X )=variance of current population (at component level);
E (Var(Z ))=expected variance of the trial population

DE/rand/L/*

[Zaharie, 2002]

E (Var(Z )) =

(

1 + 2pm

L
∑

l=1

F 2
l −

pm(2− pm)

m

)

Var(X )

DE/random-to-best/1/*

[Zaharie, 2008]

E (Var(Z )) =
(

1 + 2pmF
2 − pm(2−pm)

m
− λp2m

m−1
m

)

Var(X )

+λ2 pm(1−pm)
m

∑m

i=1(x∗ − xi )
2
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What do we know about DE behaviour ?

Population diversity
Theoretical results

Var(X )=variance of current population (at component level);
E (Var(Z ))=expected variance of the trial population

DE/current-to-rand/1

(arithmetical recombination) [Zaharie, 2008]

E (Var(Z )) =

(

1 + 2F 2 − 2q +
2m − 1

m
q2
)

Var(X )

DE/either-or

[Zaharie, 2012]

E (Var(Z )) =
(

p2F (1 + 2F 2 − 1
m
) + 2pF (1− pF )(

m−1
m

+ F 2 + 3K 2 − 2K )

+(1− pF )
2
(

m−1
m

+ 2m−2
m

(3K 2 − 2K )
))

Var(X )
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What do we know about DE behaviour ?

Population diversity
Theoretical vs empirical evolution

Evolution of population variance after mutation and crossover (no selection)

Practical remark: the population variance can decrease even in the absence
of selection pressure

F=0.25
F=0.274

F=0.28

F=0.29

F=0.3

F=0.35F=0.4

0 20 40 60 80 100
g0

1

2

3

4

5
EHVarHZLL

0 20 40 60 80 100
g0

1

2

3

4

5
<VarHZL>

DE/either-or
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What do we know about DE behaviour ?

Population diversity
From theory to practical insights

E (Var(Z )) = c(F ,CR , pF , q,m, n)Var(X )

if c(F ,CR , pF , q,m, n) < 1 the algorithm will probably prematurely converge

one can control the impact which mutation and crossover have on the
population variance by changing the values of the parameters involved in the
factor c

this is a particularity of DE, as in EAs using mutation based additive
perturbation involving an arbitrary distribution:

E (Var(Z )) = aVar(X ) + b

with b not necessarily zero

D. Zaharie (UVT) Differential Evolution 21.06.2012 30 / 48



What do we know about DE behaviour ?

Population diversity
From theory to practical insights

E (Var(Z )) = c(F ,CR , pF , q,m, n)Var(X )

if c(F ,CR , pF , q,m, n) < 1 the algorithm will probably prematurely converge

one can control the impact which mutation and crossover have on the
population variance by changing the values of the parameters involved in the
factor c

this is a particularity of DE, as in EAs using mutation based additive
perturbation involving an arbitrary distribution:

E (Var(Z )) = aVar(X ) + b

with b not necessarily zero

D. Zaharie (UVT) Differential Evolution 21.06.2012 30 / 48



What do we know about DE behaviour ?

Population diversity
From theory to practical insights

E (Var(Z )) = c(F ,CR , pF , q,m, n)Var(X )

if c(F ,CR , pF , q,m, n) < 1 the algorithm will probably prematurely converge

one can control the impact which mutation and crossover have on the
population variance by changing the values of the parameters involved in the
factor c

this is a particularity of DE, as in EAs using mutation based additive
perturbation involving an arbitrary distribution:

E (Var(Z )) = aVar(X ) + b

with b not necessarily zero

D. Zaharie (UVT) Differential Evolution 21.06.2012 30 / 48



What do we know about DE behaviour ?

Population diversity
From theory to practical insights

E (Var(Z )) = c(F ,CR , pF , q,m, n)Var(X )

if c(F ,CR , pF , q,m, n) < 1 the algorithm will probably prematurely converge

one can control the impact which mutation and crossover have on the
population variance by changing the values of the parameters involved in the
factor c

this is a particularity of DE, as in EAs using mutation based additive
perturbation involving an arbitrary distribution:

E (Var(Z )) = aVar(X ) + b

with b not necessarily zero

D. Zaharie (UVT) Differential Evolution 21.06.2012 30 / 48



What do we know about DE behaviour ?

Population diversity
From theory to practical insights

E (Var(Z )) = c(F ,CR , pF , q,m, n)Var(X )

the value of c(F ,CR , pF , q,m, n) is
highly influenced by the type of
mutation and crossover

DE/either-or

pF=0.5

DE/current-to-rand

q=0.5

DE/rand/1/exp

CR=0.9

DE/rand/1/bin

CR=0.5

m=100,  n=100

0.0 0.2 0.4 0.6 0.8 1.0
F0.0

0.5

1.0

1.5

2.0
c

DE/either-or,  pF=0.5

DE/current-to-rand,  q=0.5

DE/rand/1/bin,  CR=0.5

DE/rand/1/exp

F=0.75

n=100

0 20 40 60 80 100
m0.0

0.5

1.0

1.5

2.0

2.5
c

DE/either-or

DE/current-to-rand

DE/rand/1/exp

DE/rand/1/bin

0.0 0.2 0.4 0.6 0.8 1.0
CR,q,pF0.0

0.5

1.0

1.5

2.0

2.5
c

D. Zaharie (UVT) Differential Evolution 21.06.2012 31 / 48



What do we know about DE behaviour ?

Population diversity
Avoiding premature convergence

choose the DE control parameters (F , CR , m etc) such that the population
diversity does not decrease too fast (c(CR ,F , q,m, n) > 1)

by solving c(F ,CR , pF , q,m, n) = 1 we can find a lower bound for F under
which the population decreases even in the absence of selection
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Population diversity
Avoiding premature convergence

choose the DE control parameters (F , CR , m etc) such that the population
diversity does not decrease too fast (c(CR ,F , q,m, n) > 1)

by solving c(F ,CR , pF , q,m, n) = 1 we can find a lower bound for F under
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What do we know about DE behaviour ?

Population diversity
Avoiding premature convergence

Example:

DE/rand/1/bin for Neumaier fct,
n = 2

m = 20, CR = 0.9, F = 0.2

lower bound Flow = 0.23
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Population diversity
Avoiding premature convergence

Example:
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What do we know about DE behaviour ?

Population diversity
Avoiding premature convergence

the knowledge of lower bound is particularly important for small populations

successfull usage of the lower bound: variant of jDE [Brest et al. 2006] adapted for
Dynamic Optimization Problems (winner of CEC 2009 competition)

in static jDE the parameter F is sampled from [0.1,0.9]
in dynamic jDE the parameter F is sampled from [0.36, 0.9]

D. Zaharie (UVT) Differential Evolution 21.06.2012 36 / 48



What do we know about DE behaviour ?

Population diversity
Explaining empirical rules

Rule of thumb for DE/either-or: K = (F + 1)/2

When K = (F + 1)/2 the variance evolution is not sensitive to pF
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What do we know about DE behaviour ?

Differential Evolution without differences ?

Question: can the DE behaviour be reproduced by mechanisms which do not
involve differences?

Mimicking the distribution of DE trial population

Use a Gamma-like probability distribution to generate trial vectors [Ali& Fatti,

2006]

Advantage: all trial vectors are in the search domain (no repairing rule is
needed)

Disadvantage: more complicated than DE

Mimicking the DE trial population variance

Variance-based mutation [Zaharie, 2008]

yi = r1 + ξi , ξji ∼ N(0, σ) σ2 = F 2Var(X j) m
m−1

E (Var(Z )) = (1+ p2mF
2− pm(2−pm)

m
)Var(X ) - as in the case of DE/rand/1/*

however, the performance is not identical
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What do we know about DE behaviour ?

Variance Based Mutation - Numerical Results

CR F DE/rand/1/bin var/bin
〈f ∗〉 Success 〈f ∗〉 Success
stdev(f ∗) 〈nfe〉 stdev(f ∗) 〈nfe〉

0.1 0.5 9 · 10−9 30/30 9 · 10−9 30/30
±10−10 (380416) ±10−10 (190290)

0.5 0.5 10−4 0/30 9 · 10−9 30/30
±10−5 (500000) ±10−10 (204703)

0.9 0.5 0.0078 18/30 1.27 · 10−8 27/30
±0.0125 (306933) ±10−8 (470792)

0.1 0.2 9 · 10−9 30/30 0.0158 24/30
±2 · 10−10 (137090) 0.0318 (131887)

0.5 0.2 0.0959 18/30 1.3469 0/30
±0.1657 (87666) 1.5373 (500000)

Test function: f (x1, . . . , xn) =
1

4000

∑n

j=1 x
2
j −

∏n

j=1 cos(xj/
√
n) + 1 (Griewank,

n=100)
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Which problems are particularly difficult for standard DE ?

Outline

1 What is Differential Evolution (DE) ?
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Which problems are particularly difficult for standard DE ?

Non-separable problems

Separable functions:

argmin(x1,x2,...,xn)f (x1, x2, . . . , xn) = (argminx1 f (x1, ∗, . . . , ∗), argminx2 f (∗, x2, . . .

Example (additively separable): f (x1, x2, . . . , xn) =
∑n

i=1 fi (xi )
DE with small values of CR (e.g. CR ≤ 2) explores the separability

Nonseparable functions: the variables are correlated

Example: by a rotation of the axes a separable problem can become
nonseparable
DE is rotationally invariant only when CR = 1 (only mutation)
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Which problems are particularly difficult for standard DE ?

Non-separable problems

using only mutation ⇒ reduces the number of trial vectors ⇒ stagnation

DE/rand/1/bin: when CR = 1 there are (m − 1)(m − 2) possible trial
vectors instead of (m − 1)(m − 2)(2n − 1)

Idea: use of ”recombination differentials” (differences involving the current
element xi )

DE/either-or [Price, 2005], drift free DE [Price, 2008]

zi =

{

xi + F · (xr1 − xr2) if rnd < pF
xi + K · (xr3 − xr4 − 2xi ) otherwise

Combinatorial Differential Evolution [Iorio, Li, 2008] - alternatively applies:

zi = xi + F · (xi − xr ) z
j
i =

{

x
j
i + F · (x ji − x jr ) if rnd < 0.5

x
j
i + F · (x jr − x

j
i ) otherwise

when f (xi ) < f (xr )
Remark. Not strict rotationally invariant but generates new trial
vectors around the current one
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Which problems are particularly difficult for standard DE ?

High-dimensional problems

the problem size influences directly the relationship between pm and CR

(especially for exponential crossover)

CR values tuned for small size problems are not necessarily good for
large size problems

Most non hybrid DE variants are based on cooperative coevolution which
split the problem into smaller sub-problems:

a potential solution consists of several components
evolve independently the population corresponding to each component
(coevolution)
each component is evaluated in the context of other components
(cooperation)
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Which problems are particularly difficult for standard DE ?

Noisy problems

standard DE behaves rather poor for noisy optimization problems

Cause: the difference based mutation does not ensure enough level of
randomness

Solution: increase the level of randomness

random control parameters (F and CR)
extend the pool of perturbations (e.g. opposition based DE)
hybridization
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Which problems are particularly difficult for standard DE ?

Conclusions

DE should be in the ”bag of tools” of practitioners, but ...

attention should be paid on the choice of variant and parameters

use the existing theoretical results to collect useful practical insights
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