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Abstract. The aim of this work is to analyze the influence of several
methods to handle the missing values when searching for classification
rules in medical data. The rule mining process is based on a multi-
objective evolutionary algorithm and we analyzed the impact on the
evolved rules’ quality of a simple imputation method and of two strate-
gies which deal with missing values during the mining process. The pro-
posed methods interfere with the evolutionary process by influencing the
evaluation of the criteria used to measure the rules accuracy and interest-
ingness. Preliminary tests, conducted on medical data, suggest that there
are no statistically significant differences between the analyzed methods.
However the methods dealing with the missing values during the mining
process leads to slightly better rules than the pre-processing strategy
based on median imputation.

1 Introduction

Medical data mining is specifically aimed at providing reliable knowledge in a
comprehensible form. In the particular case of classification problems, black-
box classifiers (e.g. neural networks) do not always satisfy the comprehensibility
requirements. Therefore it can be helpful to extract rules either from trained
classifiers or directly from data. The work presented in this paper followed the
latter approach.

Discovering rules in data is a search process usually guided by several mea-
sures based on which the potential quality and usefulness of rules are evaluated
(accuracy, interestingness and comprehensibility measures). These measures are
usually conflicting, i.e. an accurate rule is not necessarily interesting or easy
to read, thus the searching process has to be multicriterial. Evolutionary algo-
rithms (EAs) proved to be valuable instruments in discovering rules from data
[1], [4]. Approaches based on multi-objective evolutionary algorithms (MOEASs)
have also been proposed [3].

On the other hand, the medical data encountered in practice usually suffer
from a significant number of missing values (MVs). Although every effort should
be made towards avoiding sparse data collection of medical data (as they may



lead to biased conclusions), almost always there are some missing data and they
should be handled with care.

The most radical approach to deal with MVs is to simply eliminate the
observations with any missing variable values (i.e. the incomplete cases) from the
analysis. Although a very simple solution, this may result in severe reduction of
available data and lost of potentially valuable information in the incomplete cases
[6]. Another approach can be to divide the database with missing values into
several valid databases (i.e. for a rule, a valid database must not have any missing
values on attributes involved in the rule) and redefine the quality measures
for each such database [8]. Other strategies are focused on pre-processing the
data by imputation (i.e. substituting a value for each missing piece of data),
usually employing the most common value, or another value reflecting the central
tendency for that attribute [9].

Many efforts have been made for finding reliable solutions for mining rules
from incomplete data, but they were mostly focused on association rules [6],
[7],[8]. Being involved in a study targeted at discovering classification rules for
preterm-birth prediction, we faced the problem of incomplete data. Moreover,
some attributes had up to 90% absent values, while still could not be completely
ignored in the classification sought. This created serious difficulties in the mining
process and motivated us to try to find a practical solution. To the best of our
knowledge, the impact of the different methods of handling the MVs in mining
classification rules by evolutionary algorithms has not been analyzed and we have
not found any reported results on the robustness of evolutionary rule mining.
Taking all these into account, we undertook such an analysis for medical data.

2 Evolutionary Rule Mining

The core of our mining approach is a multi-objective evolutionary algorithm
(MOEA) which evolves a population of classification IF-THEN rules having in
the antecedent part a conjunction of conditions satisfied by attributes. The evolu-
tionary process aims to identify rules corresponding to one class thus the problem
should be interpreted as a binary classification one. For instance when the aim is
to evolve rules corresponding to the class of patients having diabetes a candidate
rule could be IF' Plasma glucose concentration >123 AND Body mass index > 23
THEN diabetes class. Since the class to be described by rules is fixed, only the
antecedent part of the rule should be discovered and therefore encoded in the
population. The general structure of the MOEA is described in Algorithm 1 and
the particularities of the rules encoding and of the corresponding evolutionary
operators are described in the following.

Rules encoding. Each element of the population encodes the antecedent part of
a rule and it consists of a list of components corresponding to all attributes in
the data set. Each component consists of three fields: (presence flag, operator,
value). The presence flag is a binary value specifying whether the corresponding
attribute is involved in the rule. The operator allows specifying the condition
the attribute should satisfy. We used two possible operators for each type of



Algorithm 1 Generic MOEA for rules extraction
1: Initialize a population of m rules
2: Evaluate the population
3: while ”the maximal number of generations is not reached” do
: Generate m new rules by crossover

4

5 Apply mutation to rules obtained by crossover

6: Evaluate the new elements

7:  Join the old and the new populations

8:  Select the best m rules from the joined population
9: end while

attributes. In the case of numerical attributes the possible operators are < (coded
by 0) and > (coded by 1). For the categorical attributes the operators are =
(coded by 1) and # (coded by 0). The value field contains the value associated
to the attribute.

Crossover and mutation. During each generation, a new population is con-
structed by crossover and mutation from the elements of the current population.
By crossover, a new rule is constructed starting from two randomly selected
rules. The crossover procedure can be described as following: (i) if the attribute
is absent from both parent rules, it will be absent from the generated rule, as
well; (ii) if the attribute is present in only one parent rule, its operator and value
field are transferred to the new rule; (iii) if the attribute is present in both rules
and satisfies the same type of condition (the operator field has the same value
in both rules) then it is transferred to the new rule: for numerical attributes,
the new value is the average of the values corresponding to the parent rules; for
nominal attributes, one of the parents values is just randomly taken; (iv) if the
attribute is present in both rules but it satisfies different conditions, then the
triplet to be transferred into the new rule is taken from the parent rule which is
better with respect to one of the evaluation criteria (in our experiments we used
the first criterion specified by the user).

The mutation has the role of modifying the rules obtained by crossover. For
each attribute, mutation is applied with a given probability (e.g. p;, = 0.1) and
it can affect one of the fields (i.e. presence flag, operator or value) and only one
at each mutation step. By switching the presence flag, some attributes can be
inserted or removed from the rule, thus leading to either a more general or a
more specific rule. By changing the operator field, one changes the condition the
attribute should satisfy. The mutation of the value field consists in choosing a
new value based on a uniform selection from the range of values corresponding
to the attribute.

Rules evaluation. The generated rules are evaluated at each generation with
respect to several measures which determine their fitness. In our analysis we
used quality measures specific to classification problems (e.g. accuracy, specificity
and sensitivity) and measures quantifying the rule interestingness (e.g. uncovered
negative [5] and lift). Let us consider the case of searching for rules corresponding



to a class C in a data set X (X = C UC). All above mentioned measures can
be computed for a rule R by using the following probabilities: P(R) (probability
to satisfy the antecedent of the rule R), P(C) (probability to belong to class
C), P(R,C) (probability to satisfy the rule R and to belong to the class C)
and the probabilities corresponding to the complementary events (P(R), P(C),
P(R,C)). Based on these probabilities the measures used in our analysis can be
defined as follows:

acc = P(R,C) + P(R,C) lift=P(R,C)/(P(R)P(C))
spec = P(R,C)/P(C) UN = P(R,C) (1)
sens = P(R,C)/P(C)

A rule is better as all these values are larger. If there are no missing values
in the data, the probabilities involved in Eq.(1) are estimated by using relative
frequencies. When there are missing values in the data they have to be taken
into account, thus different ways for computing the frequencies can be used. This
aspect will be discussed in the next section.

Selection. Since several quality criteria are used to evaluate the rules there is
no just one best rule but several which are reciprocally non-dominated. A rule
is considered as non-dominated, with respect to rules in a given set, if no other
rule in that set is better with respect to all criteria. The set of all non-dominated
rules form the so-called Pareto optimal set and the corresponding values of the
evaluation criteria define the Pareto front. The aim of any MOEA is to find a
good approximation of the Pareto front and implicitly of the Pareto optimal set.
Our selection strategy is similar to that used in NSGA-IT [2], meaning that the
elements in the joined population (parents and offspring) are ranked based on
the non-domination relationship.

The elements that are non-dominated with respect to all elements in the
joined population belong to the first nondomination set and have the rank 1.
Subsequently, the nondominated elements in the population obtained by ignoring
the elements of rank 1 belong to the second nondomination set and so on. The m
elements corresponding to the new generation are selected from the 2m ranked
elements in their ranks increasing order. For stimulating the diversity of the
resulting approximation of the Pareto front, a crowding distance is used as a
second selection criterion: from two elements having the same rank, the one
with a larger crowding distance (suggesting that it belongs to a less crowded
region) is selected. A particular characteristic of our approach is related to the
crowding distance between rules. We used two types of distances, one expressing
the structural difference between rules and another expressing the difference
between the data subsets covered by the rules. In the case of two rules R and
R’ encoded by lists of n tuples (t = (p,0,v)) the structural distance is defined
as follows:

dS(R,R’):M, dj(R,R)=1 1 ifp;=p}, o;#0;, (2)

n .
2 if p; # pj



where p; denotes the presence flag and o; denotes the operator corresponding
to jth attribute. Thus two rules are considered to be identical from a structural
point of view if they contain the same attributes and the terms have identical
associated operators. The distance related with the rule coverage is defined as
the cardinal of the subset of data which are either covered by the first rule
but are not covered by the second rule, or are covered by the second rule and
are not covered by the first one. Thus the cover-based distance is: do(R, R') =
card(C(R)AC(R’)), where C(R) is the set of data instances which satisfy the
rule (are covered by the rule) and A denotes the symmetrical difference between
two sets. These distances are also used to filter the final results in order to
eliminate some of the rules which are to close to each other.

3 Handling Missing Values

When we evaluate a rule with respect to a set of incomplete data we have to
decide how the missing values will be handled. A first variant would be to pre-
process the data and to impute the missing values using one of the well-known
imputation methods [7],[9]. The variant we analyze is based on the idea of dealing
with missing values during the rule mining process. The step when we have
to take into account the existence of missing values is while checking whether
or not a record with MVs matches a given rule. To be more specific let us
consider the case of a rule containing k terms, R = (11,...,T), where each
term T, describes a property of an attribute iq (e.g. a;, € V). For instance
for a rule R=IF (a2 = 5)AND(a3 < 3.5)AND(as > 4) THEN C, which involves
three attributes (i1 = 2, iz = 3, i3 = 5), the corresponding sets of values are:
Vit = {2}, Vi = [infi,,3.5], VI = (4, sup,] (infi, is the lower bound of the
possible values for attribute iz and sup;, is the upper bound of the possible
values for attribute i3). Using these notations we can define the probabilities
involved in Eq. (1).

Let us first start with the case of complete data (no missing values). In such
a situation for each rule R = (11,...,T) and a data record z = (z1,...,2,)
one can define the matching value:

e _ 1; wiqe‘/qRaq:L_k
plz, B) = {O, there exists ¢ with z;, ¢ VqR ’ (3)

Using this matching value one can compute a cover measure expressing the
number of elements in a subset S C X of data which match the rule:

cover(R, S) = Z wu(z, R). (4)

€S

Similarly, one can define cover(R, S) = 3°, . (1= pu(z, R)). Thus the probabilities
used to evaluate the rules can be estimated using the following frequencies:

P(R) = cover(R, X)/cardX P(R,C) = cover(R,C)/cardX

P(R) = cover(R, X)/cardX P(R,C) = cover(R,C)/cardX.



Let us turn now to the case of incomplete data. When evaluating a rule R,
the missing values can interfere with the evaluation process only when they
correspond to attributes involved in the rule. Therefore we have to decide on
how the computation of the above probabilities should be modified in such a
situation. We analyze three variants.

Variant 1. The simplest variant is to consider that a data x which has a missing
value on at least one attribute involved in the rule does not match the rule
(even if all other terms in the rule are satisfied). Thus the only change is in the
computation of p(z, R) which becomes:

(I R)_ la que‘/;lRaq:lv_k
AT 20) = 0,  there exists ¢ such that z; ¢ V;IR or r;, is missing -

(6)

All the other equations remain unchanged. The main impact of this change
is the fact that the cover measure of rules involving attributes with missing
values will be smaller. Since the denominator used in Egs. (5) is unchanged the
corresponding probabilities will be smaller. Therefore, this first variant penalizes
rules which involve incomplete attributes, leading to a smaller chance for survival
during the evolutionary process.

Variant 2. In this variant we try to limit the penalization of rules involving
incomplete attributes. Therefore the probabilities given in Egs. (5) will be com-
puted not with respect to X but with respect to S(R) C X which contains only
data having specified all attributes involved in R (these data are considered valid
with respect to this rule). This means replacing X with S(R) in Egs.(5). By this
change the rules involving incomplete attributes are not so drastically penalized
as in the previous variant. This approach is similar to that used in [8] to compute
the support in the case of extracting association rules from incomplete data.
Variant 3. Another variant is to not ignore the incomplete records but to penalize
them by using a non-crisp matching value. Instead, of the 0 match value for a
missing value, each missing attribute value will be assigned a probability to
satisfy the corresponding term of the rule. The matching value, pu(x, R), will be
in this case defined as follows:

k 1, T, € VZIR
w(x, R) = H v(z,Ty), v(z,Tq) =< 0, zi, € V] . (7)
a=1 m(V,R), x;, is missing

The probability 7r(VqR) corresponding to a term 7} is defined depending on the
attribute type and term structure. If the attribute a;, is discrete then VqR is a
finite set. If the term T is of equality type (a;, = v,) then m(V,) = 1/card(V,}?)
and if it is of inequality type (a;, # vq) then m(V,R) = (card(V;%)—1)/card(V}).
In the case of continuous numeric attributes their values usually belong to a
bounded interval (e.g. [inf;,, sup;,]). If the term in the rule is based on a "less
than” operator (a;, < v,) then w(V,F) = (v, — infi,)/(supi, — infi,) and if

it is based on a “greater than” operator (a;, > vy) then (V) = (sup;, —
vg)/(supi, —inf;, ).



This is just a variant of estimating the probability that a missing value would
satisfy the rule term, based on the simplifying assumption that the values of the
attributes are uniformly distributed on their range. By using other distribution
models for the attributes values, different matching values would be obtained.
The cover measure and the corresponding probabilities are further computed as
in Egs. (4) and (5). The main difference between the first variant and the current
one is the fact that in the first case cover(R,S) € {1,...,cardS} while in the
second one cover(R, S) € [1, cardS)].

4 A Comparative Analysis for Medical Data

In order to analyze the impact of different methods of handling missing values on
the quality of evolved rules we conducted some experiments on two datasets from
the UCI Machine Learning repository (http://mlearn.ics.uci.edu/ MLReposi-
tory.html): Pima indians diabetes and Wisconsin breast cancer (1991) datasets.

Data preparation. The data were prepared for tests by randomly eliminating
mv% values of attributes (mv € {10, 20,30} and it represented a percent of the
number of total number of attributes in the dataset). For cross-validation, the
data were randomly split in five folds. The missing values were introduced only
in the data used for training, the validation sets being with the original values
of attributes.

Methods for handling missing values. We analyzed three methods: the first one
(denoted as Method 1) corresponds to variant 2 described in the previous sec-
tion; the second one (Method 2) is in fact the variant with non-crisp matching
values; and Method 3 is based on a simple imputation strategy (the data are
pre-processed such that the missing values are replaced with the median of all
existing values for the corresponding attribute).

The classification rules mining. For all datasets we considered the problem of
evolving classification rules corresponding to one class (e.g. the malignant class
in breast cancer dataset). We used the multi-objective evolutionary algorithm
described in Section 2 in order to evolve rules which simultaneously maximize
two criteria: the product between specificity and sensitivity (specksens) and the
uncovered negative measure (UN). This last one was used since results presented
in [5] suggest that it is an adequate interestingness measure for medical data. The
parameters of the algorithm were set as follows. The population size was set to
50, the mutation probability was set to 0.1 and the number of generations to 100.
This rather small number of generations was used since our primary goal was
to compare the methods for treating the missing values and not to necessarily
obtain high accurate rules. After 100 generations the algorithm provides a set
of rules which are reciprocally non-dominated with respect the chosen criteria.
This set of rules can be interpreted as a classification ruleset. Therefore in the
testing step the matching between each test data and each rule in the set is
checked and if the data matches with at least one rule then is counted a match.
This number of matches between the test data and the set of rules is further used
to compute quality measures of the ruleset (accuracy, specificity, sensitivity, lift,



uncovered negative). In order to allow the comparison between different runs,
at each run the evolutionary algorithm starts from the same initial population.
The same operators and control parameters were used in all cases. Thus the
differences remarked in the final results are entirely determined by the impact
of the different methods for handling missing values.

Results. The experiments illustrated that using different methods for handling
the missing values different sets of rules are obtained. Table 1 presents the rules
with the highest value of spec x sens from the sets evolved by the analyzed
methods. In the case of Method 1 were evolved 18 rules, in the second case were
evolved 9 and in the last one 19 rules.

Table 1. Examples of rules extracted from the Pima indians diabetes data set with
10% of missing values

Method Rule with highest value of the product spec * sens

1 IF (Plasma glucose concentration >110) AND (2-h serum insulin<532.4)
AND (BMI>28.73) AND (Diabetes pedigree function #0)AND (Age>28)
THEN diabetes class
(acc = 0.75, spec = 0.86, sens = 0.55, UN = 0.55, li ft = 9.72)

2 IF (Plasma glucose concentration > 108.47) AND (BMI>26.38)
THEN diabetes class
(acc = 0.68, spec = 0.67, sens = 0.72,UN = 0.43, li ft = 1.54)

3 IF (Plasma glucose concentration >110.32) AND (2-h serum insulin<533.98)
AND (BMI> 24) AND (age > 24) THEN diabetes class
(acc = 0.72, spec = 0.77, sens = 0.64,UN = 0.5, li ft = 1.72)

On the other hand, the results in Tables 2 suggest that the differences in the
quality of the obtained rulesets are not statistically significant. Slightly better
results were obtained for methods which adjust the computation of the quality
measures in order to deal with MVs (Method 1 and Method 2).

This is especially remarked in the case of breast cancer dataset when the
method based on non-crisp matching values (Method 2) leads to results compa-
rable with those obtained for complete data.

We further conducted a similar analysis on a set of obstetrical data containing
information about births collected during one year (2006) at one regional hospital
of obstetrics and gynaecology. The set of data contains 2686 records correspond-
ing to two classes: the class of pre-term births (370 records, representing 13.77%)
and the class of on-term births (2316 records, representing 86.23%). Each record
contains 63 attributes corresponding to different characteristics of mothers and
new-born children. The overall percentage of missing values is 23% but they are
non-uniformly distributed over attributes. There are attributes with a very small
percent of missing values (e.g. the value of the mother age is missing in only two
cases, representing 0.07%) and attributes with a high percent of missing values
(e.g. the value of the biparietal diameter which is missing in 90% of cases). Our
aim was to evolve rules corresponding to the pre-term births class. The large



Table 2. Results for two data sets from UCI Machine Learning repository

mv Method 1 Method 2 Method 3
0% 10% 20% 30% 10% 20% 30% 10% 20% 30%
Pima indians diabetes data set
acc 0.72+ 0.72+ 0.66*+ 0.67+ 0.71+ 0.67+ 0.67 0.71&£ 0.71£ 0.72+
0.02 0.01 0.03 0.05 0.04 0.07 0.07 0.05 0.05 0.04
spec 0.74+ 0.74+ 0.64+ 0.68+ 0.72+ 0.66+ 0.63+ 0.71£ 0.7+ 0.73t
0.05 0.04 0.12 0.08 0.08 0.18 0.19 0.07 0.1 0.08
sens 0.68+ 0.68+ 0.72+ 0.64+ 0.69% 0.68+ 0.76& 0.72+ 0.72+ 0.71+
0.09 0.08 0.2 0.09 0.09 0.14 0.16 0.04 0.06 0.04
UN 048+ 048+ 041+ 044+ 047+ 0.43+= 0.41+ 0.46+ 045+ 047+
0.03 0.03 0.08 0.05 0.05 0.11 0.12 0.04 0.06 0.05
lift 1.68+ 1.70& 1.51+ 1.52+ 1.66x 1.58+ 1.58+ 1.66+ 1.65+ 1.7+
0.09 0.06 0.1 0.18 0.19 0.26 0.2 0.19 0.19 0.17
Breast cancer data set
acc 0.9+ 0.89+ 0.88+ 0.87 0.92+ 0.91+ 0.92+ 0.85+ 0.86t 0.88+%
0.06 0.04 0.05 0.06 0.04 0.06 0.03 0.04 0.02 0.05
spec 0.89+ 0.88+ 0.83+ 0.85+ 0.93x 0.9+ 0.92+ 0.8+ 0.79+ 0.84+
0.07 0.06 0.07 0.11 0.04 0.06 0.04 0.04 0.03 0.07
sens 0.944+ 0.924+ 0.96+ 0.91+ 0.92+ 0.9+ 0.91£ 0.95+ 1+ 0.95+
0.04 0.05 0.03 0.13 0.07 0.09 0.06 0.09 0 0.07
UN 0.64+ 0.58+ 0.54+ 0.55+ 0.6 0.59+ 0.6 0.52+ 0.51+ 0.55+%
0.15 0.04 0.04 0.07 0.03 0.04 0.02 0.02 0.02 0.04
lift 3.98+ 2.39+ 2.2+ 2.34+ 2.57% 247+ 254+ 2.1+ 2.09+ 2.25+
3.64 0.25 0.23 0.35 0.21 0.31 0.19 0.16 0.09 0.21

number of attributes leads to a very large search space, creating difficulties for
the evolutionary algorithm to discover high quality rules. Therefore we selected
various subsets of attributes to be involved in the rules. The results presented
in Table 3 were obtained when using as possible antecedents in the classification
rules the information about previous pregnancies, miscarriages and abortions
and about the fundal height. This last attribute has 16% of missing values. We
used the product between the specificity and sensitivity as unique optimization
criterion. The optimization being with a single criterion each run led to only one
rule. All obtained rules contain a term corresponding to ”fundus uterus” height
attribute (e.g. ”fundus uterus” height< 29) even if this attribute has missing
values while the other ones do not contain missing values. This can be explained
by the fact that the fundal height attribute has a predictive value for the pre-
term birth. On the other hand, as Table 3 suggests the results obtained by the
three analyzed methods are not significantly different. However the first method
leads to slightly better results than the other two.

5 Conclusions

We proposed several methods to deal with missing values when evolving clas-
sification rules from data. All of them take into account the absence of some
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Table 3. Results for obstetrical dataset

acc spec sens UN lift
Method 1 0.70£0.09  0.73%+0.13 0.52+0.17 0.58+0.12 1.9240.63
Method 2 0.6440.08 0.6440.12 0.5940.18 0.55+0.1 1.57+0.34
Method 3 0.64+0.05  0.66+0.07 0.54+0.11 0.57£0.06  1.5440.29

attributes’ values by modifying the estimation of probabilities involved in the
evaluation of rules quality. A comparative analysis involving two of the proposed
methods and a simple imputation strategy were conducted for two datasets from
UCI repository and a database containing obstetrical data. Even if no statisti-
cally significant differences were remarked, the methods which interfere with the
evaluation of the rule’s quality led to slightly better results than an imputation
method based on the median.
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