
BULETINUL STIINTIFIC al Universitatii “Politehnica” din Timisoara, ROMANIA,
Seria AUTOMATICA si CALCULATOARE

SCIENTIFIC BULLETIN of “Politehnica” University of Timisoara, ROMANIA,
Transactions on AUTOMATIC CONTROL and COMPUTER SCIENCE, Vol. xx (yy), Fasc. z, 20vv, ISSN 1224-600X

1

Nature Inspired Metaheuristics for Task Scheduling in Static and Dynamic
Computing Environments

Flavia Zamfirache*, Daniela Zaharie* and Ciprian Craciun*

* Department of Computer Science, West University of Timisoara, Faculty of Mathematics and Informatics, Blvd. V. Parvan 4
Timisoara 300223, Romania, Phone: (0)256-592155, Fax: (0)256-592316, E-Mail: {zflavia,dzaharie,ccraciun}@info.uvt.ro

Abstract – Background: Finding optimal assignments of
tasks to processing elements in heterogeneous computing
environments is a challenging optimization problem
which attracted a lot of researchers during the last
decades. The aim of this paper is to analyze the behavior
of two nature inspired approaches for task scheduling in
static and in dynamic environments.
Methods: An evolutionary and an ant based schedulers
are proposed. For each one the selection of adequate
operators is discussed and some memory based
mechanisms are investigated in order to asses their ability
to deal with the dynamic nature of the environment. The
numerical analysis is based on a well-known benchmark
for task scheduling in heterogeneous environments and
the dynamic character of the environment is simulated
randomly marking some resources as unavailable.
Results: Results obtained by three types of experiments
are provided. The first experiment aims to assess the
effectiveness of the schedulers in the case of static
computing environments. The second experiment is
focused on the comparison between the static and
dynamic variants of the schedulers tested in the case of
the simulated dynamic environment. The last experiment
provides results of a robustness analysis.
Conclusions: The numerical results illustrate that the
nature inspired schedulers produce good and robust
schedules especially in the case of heterogeneous
computing environments characterized by inconsistency.
In the case of dynamic environments the memory
techniques introduced in the nature inspired schedulers
proved to be beneficial as long as the ratio of processors
which become unaivalable between successive scheduling
events is around 10%.

Keywords: task scheduling, heterogeneous computing

environments, evolutionary algorithms, ant
colony optimization, dynamic optimization

I. INTRODUCTION

The task scheduling problem, i.e. the assignment of tasks to
resources such that some quality of services criteria are
optimized, attracted a lot of attention lately [1][2]. As a
consequence, currently there are a lot of scheduling

algorithms addressing different variants of the problem.
The task scheduling variants differ with respect to the tasks
properties, to the computing environment characteristics
and to the scheduling process particularities. Thus the set of
tasks to be scheduled (sometimes called application job or
meta-task) could consist of independent tasks or of inter-
related ones. In the first case the scheduling problem
belongs to the unconstrained optimization class, while in
the second case it is a constrained optimization problem.
The computing environment can consist of homogenous
computing nodes (as in the cases of computational clusters)
or of heterogeneous resources (as in the case of grid or
cloud computing). Moreover the availability of resources
can vary in time, i.e. some of them can become
unavailable. In this case the computing environment is a
dynamic one with elements appearing and disappearing
from the resource pool making the optimization problem a
dynamic one. On the other hand there are are different
approaches in mapping tasks to resources [3]: online
mapping, also called dynamic scheduling, when the tasks
are mapped as they arrive; batch mapping, when the
scheduler waits until a given number of tasks arrived;
pseudo-batch mapping characterized by the fact that always
when an event occurs (e.g. after a given amount of time) all
unscheduled tasks are (re)scheduled. In the case of batch
mapping the number of tasks to be scheduled is constant
while in the case pf pseudo-batch mapping the number of
tasks is variable.

This paper deals with the batch mapping of independent
tasks in a heterogeneous computing environment
characterized by a variable set of available resources, i.e.
batch mapping in a dynamic environment. For instance, let
us consider a meta-task consisting of a set of independent
tasks which should be periodically executed on a
distributed computing environment. This means that there
are some scheduling events triggered each time the meta-
task should be scheduled again. Between two consecutive
scheduling events the status of the computing environment
can change, meaning that some machines become
unavailable while other ones become available. Moreover,
the computing environment is usually heterogeneous
meaning that the execution time of a given task is different
on different machines. Thus a good schedule corresponding

2

to a given configuration is not necessarily good for another
configuration. There are two main approaches to deal with
such a problem: (i) at each scheduling stage a new schedule
is started from scratch; (ii) in order to construct the
schedule corresponding to a new stage, some information
from the previously generated schedule are used.

The main questions arising in the second case are: (i) what
information from the previous scheduling stages should be
used in order to construct a new schedule?; (ii) what
mechanisms should be involved in the metaheuristic used
to construct the schedule in order to make it appropriate for
dynamic environments?; (iii) what is the threshold
corresponding to the percent of changes in the list of
available machines which allows to obtain benefits from
using information from the previously obtained schedules?

In this paper we extend the analysis initiated in [4]
concerning the behavior of several mechanisms of
exploiting information from previous scheduling stages
applied to two nature inspired schedulers: an evolutionary
one and an ant colony optimization one. The experimental
analysis is conducted on the benchmark data provided in
[3] and the dynamic character of the computing
environment is simulated by randomly marking some
resources as unavailable.

The rest of the paper is structured as follows. The
scheduling problem is described in the next section and
Section III presents a short review of existing nature
inspired metaheuristics for scheduling. The evolutionary
scheduler investigated in this paper is described in Section
IV and the ant based scheduler is presented in Section V.
The experimental results and their discussion are presented
in Section VI and the last section concludes the paper.

II. THE TASK SCHEDULING PROBLEM

The task scheduling problem aims to find an allocation of
resources to tasks such that the tasks requirements
(hardware, software) and their precedence constraints are
satisfied and some quality of service criteria (concerning
response/waiting/completion time, load balancing, data
transfer costs etc) are optimized. In this paper we shall
consider that the tasks are independent and the criteria to be
optimized is the maximal execution time over all resources,
i.e. makespan. The assignment of tasks is based on
knowing some estimation of the execution times of the
different tasks on different resources.

To be more specific, let us consider a set of n tasks,

},,{ 1 ntt to be scheduled on a set of nm processors

(machines), },,{ 1 mpp . Let us suppose that for each

pair),(ji pt is known an estimation),(jiET of the time

needed to execute the task it on the processor jp .

A schedule is an ordered sequence of n pairs associating
processors to tasks,)),(,),,((

11 nn jiji ptptS . The

tuple),,(1 nii denotes a permutation of order n

specifying the order of allocation of the tasks. In the case of
independent tasks this order does not influence the quality
of the schedule but it is important in the case of dependent
tasks when some order constraints should be satisfied.

There are different quality measures used to evaluate the
the schedule [6]: makespan, flowtime, imbalance, tardiness,
lateness. By far the most used measure is the makespan,
i.e. the longest execution time over the entire set of
processors. The makespan can be defined as follows:

)),((max)(
,1

kk
nk

jiCTSmakespan

 (1)

where),(kk jiCT denotes the completion time of task

ki on the processor kj and can be defined by:

),()1,,(),(kkkkk jiETkSjTjiCT (2)

with)1,,(kSjT k denoting the time moment since the

processor kj is free under the assumption that the tasks

11
,,

kii tt are already executed. This is related to the

completion time of the task scheduled at a previous step on

processor kj , i.e.

otherwiseKSjT

SinjjifjiETkSjT
kSjT kk

)1,,(

),()1,,(
),,(

(3)
At the beginning of the scheduling process all processors
are considered to be free, i.e. 0)0,,(SjT for any j .

The aim of the scheduling process analyzed here is to

identify the schedule *S having the property that

)(min)(* SmakespanSmakespan S .

III. SHORT REVIEW OF NATURE-INSPIRED
METAHEURISTICS FOR TASK SCHEDULING

Finding the globally optimal schedule is a difficult
problem, therefore near-optimal solutions are acceptable in
practice. A lot of heuristics that construct such near-
optimal solutions have been proposed up to now. A
comparison of 11 such heuristics is presented in [3] for
several sets of simulated execution times generated such
they express different characteristics of the computing
environment and of the set of tasks. The tested heuristics
include Opportunistic Load Balancing (OLB), Minimum
Execution Time (MET), Minimum Completion Time
(MCT), Min-Min, a genetic algorithm, simulated annealing
and tabu-search. The heuristics with a consistently good
behavior were Min-Min and the genetic algorithm. The
Min-Min heuristics, which we also used for comparisons, is

3

a fast greedy approach based on the idea of finding the
minimum completion time for each task and then assigning
the task with the smallest completion time to the processor
ensuring this time. Since the results on effectiveness of
genetic algorithms in tasks scheduling were presented in
[3] a lot of other nature inspired metaheuristics were
successfully applied in solving different variants of the
scheduling problem: genetic algorithms [7], [8], [9], [10],
ant colony optimization [11], [12], differential evolution
[13], particle swarm optimization [14]. Recent reviews of
different meta-heuristics for tasks scheduling, including the
nature-inspired ones can be found in [1], [2], [15].

Some of the existing approaches deal with the static
scheduling problem where the tasks and machines
characteristics are known apriori and do not change during
the scheduling process. Such approaches are those
presented in [3], [15], [12]. On the other hand there are also
results on online scheduling, meaning that the tasks arrive
sequentially and they are scheduled as they arrive (e.g.
[15], [14], [8]). The main approach in online scheduling is
that based on managing a queue of tasks for each processor
and in ensuring the load balancing by moving tasks from
one queue to another one.

One of the main issue addressed in the works studying the
applicability of evolutionary algorithms in tasks scheduling
is to identify the appropriate operators. An extensive study
of different operators is presented in [7] and one of the
main conclusion of this study is that the best results are
obtained by using a mutation operator that does a
rebalancing of the current solution. The aim of rebalancing
is to move tasks between processors in order to reduce the
makespan. However there is no detailed description of the
operation in [7]. The idea of using rebalancing is also
exploited in [8]. Therefore we also used the idea of
rebalancing the solutions in the Evolutionary Scheduler
proposed in Section IV. In [9] is presented a dynamically
genetic scheduler that operates in batch mode into an
environment with dynamically changing resources that
demonstrates the robustness of the evolutionary
approaches. In [10] it is proposed a decentralized solution
for task scheduling that provides better results for
processors load balancing and makespan.

Currently there are several ant based approaches both for
static [12], [16], [11] and dynamic scheduling [17]. The
common element of all these approaches is the fact the
scheduling problem is formulated as a problem of finding a
path in a graph. When the tasks are independent this graph
is fully connected. A node in the graph can correspond to a
pair (task, processor) as in [11], [16] or to a task as in [12].
In the first case the graph has nm nodes but a schedule
will be a path with n nodes while in the second case a
schedule correspond to a path which visits all nodes in the
graph. In both cases each ant will build a schedule by
visiting exactly n nodes. Each ant passes from one node to
another one by using a transition probability which depends
on two main factors, one which is based on a local heuristic

value related to the current schedule and one related to a
somewhat global value combining information from all
ants (the so-called pheromone level). The best results
reported in the literature [12] were obtained for the ant-
based schedulers which are hybridized with some local
search operators, which are similar to rebalancing operators
used in evolutionary approaches.

IV. AN EVOLUTIONARY SCHEDULER

In this section is presented the evolutionary scheduler
proposed in [4] and its adaptation for the case of periodical
scheduling in a dynamic environment. The general
structure of the Evolutionary Scheduler in the case of static
environments is described in Algorithm 1 and the details
concerning the solution representation, operators and
adaptation to dynamic environments are presented in the
following subsections.

Algorithm 1 The general structure of the Evolutionary
Scheduler (ES) in static environments
1: Initialize the population

)}0(,),0({)0(1 NxxX

2: 0g

3: Evaluate)0(X

4: while the stopping condition is false do
5: Copy)(gX to)1(gX

6: for Ni ,1 do

7: Construct the mutant iy from)(gxi

8: if))(()(gxmakespanymakespan ij then

9: Replace)1(gxi with iy

10: Else
11: if))(()(gxmakespanymakespan ij then

12: Append iy to)1(gX

13: Else
14: if rprand)1,0(then

15: Replace)1(gxi with a random

perturbation of iy

15: end if
17: end if
18: end if
19: end for
20: Select N elements from)1(gX

21: 1 gg

22: end while

A. Representation of schedules

Since a schedule is a set,)),(,),,((

11 nn jiji ptptS ,

of pairs (task, processor) each element in the population

4

consists of a n-order permutation),,(1 nii specifying the

tasks execution order and a mapping of tasks to processors,

),,(1 njj , where kj belongs to },,1{ m and

denotes the index of the processor on which the task of

index ki will be executed. In the case of scheduling

independent tasks it is enough to use just the mapping of
tasks to processors but in the general case when the tasks
are interrelated, the permutation should also be used in the
representation. The evolutionary scheduler was designed to
be easily adapted for the general case of interrelated tasks,
even if the results presented in this paper are for the case of
independent tasks.

B. Population initialization

The initial population consists mainly of randomly
generated schedules. A random schedule consists of a
random permutation and a random assignment of tasks to
processors, both being generated by using uniform
distributions. Besides the fully random schedules there are
also schedules which are partially generated by random
assignment of tasks to processors and partially by using a
greedy like assignment based on the estimated completion
time of a task on a given processor. More specifically,
these schedules are generated by executing the following
steps:
 a random index },,1{ nr is selected;

 the pairs),(,),,(11 rr jiji are randomly generated;

 for all remaining rn tasks, the processor is selected
by the criteria of the minimal estimated completion
time, e.g. for a task i is selected the processor j

satisfying that),(min),(liETjiET Ml , where M

denotes the list of available machines (processors).

In our implementation, 75% of the population elements
were randomly initialized while 25% of elements were
initialized using the above steps. The idea of this
initialization procedure started from using partial
components of the schedule generated by the MinMin
heuristics. In fact the MinMin schedule has been also
introduced in the initial population.

The incorporation of the MinMin schedule (or other
schedules obtained by a non-evolutionary heuristic) as a
seed in the initial population is a common approach in
evolutionary scheduling [7]. The proposed initialization
proved to behave significantly better than that based on
only random schedules.

C. Mutation operator

Several mutation operators were investigated but finally
two of them were selected: a "shift"-based mutation and a
"rebalancing"-based mutation. The "shift"-based mutation
consists of the following steps:

 extract a random task from the list of assigned tasks
and update accordingly the completion time of tasks
on the processor corresponding to the selected task;

 assign the selected task to the processor ensuring the
minimal completion time;

 append the extracted task to the list of assigned tasks.

If the population element to be mutated consists of the

tasks permutation),,(1 nii and of processors mapping

),,(1 njj and the selected task has the index ki then by

"shift"-based mutation the tasks permutation will become

),,,,,,(111 knkk iiiii and the mapping will be

),,,,,,('
111 knkk jjjjj where '

kj is the processor

on which the task ki is reassigned. On the other hand, the

"rebalancing"-based mutation does not change the tasks
permutation but only the assignment of tasks to processors.
The task to be reassigned and the new processor are
selected as follows:
 find the processor with the largest completion time;
 select a random task from this processor;
 assign the task to the processor which ensures the

largest decrease of the makespan; if there is no
processor ensuring a decrease of the current makespan
then the mutation is not applied.

Each of these two mutation strategies is applied with a

given probability: Rp for "rebalancing" mutation and

Rp1 for the "shift" mutation. Remarks on the

appropriate values of Rp depending on the particularities

of the problem are presented in Section VI. For each
element of the population the mutation operator is applied
for several times, depending on the mutation probability,

mp .

D. Selection of survivors

After generating the population of mutant individuals the
elements of the new generation are selected by comparing
each element in the current population with the
corresponding mutant. Depending on the quality of these
two elements there are three main cases and in each one a
specific decision is taken:
 The mutant is better than the parent. In this case the

mutant unconditionally replaces its parent.
 The mutant and the parent have the same quality. The

mutant is appended to the population.
 The mutant is worse than the parent. An extra

mutation is applied, with a probability rp , to the

mutant by reassigning a randomly selected task to a
randomly selected processor and it replaces its parent.

The random perturbation specified in the last case has also
the aim to stimulate the population diversity. At the end of

5

the selection process it is possible to have more than N
elements in the population. To reduce the population size to
the initial value some elements should be eliminated. This
is usually done by a standard truncation selection.

E. Adaptation to the changes in the environment

In the case of a dynamic environment the scheduling
process consists of consecutive scheduling events. At each
scheduling event there is a list of available processors
which is partially different from the list corresponding to
the previous step. If the difference between the list of
available processors is not too large then one can exploit
the schedules constructed at the previous scheduling event.
The main idea of using this information is to keep a percent
of the best elements from the previous population and to
reinitialize the other elements. The main issue arising in
such an approach is that the elements from the previous
scheduling event should be adjusted to the current set of
available processors. The adjustment is made by assigning
each task which was previously assigned to a processor
which is no more available to the fittest available
processor, i.e. the processor which ensures the minimal
completion time for that task. This reassignment of tasks is
made sequentially in the order given by the tasks
permutation corresponding to the element.

In this paper we analyzed the behavior of two variants of
using information from the evolutionary process
corresponding to previous scheduling events:

 Use of good schedules obtained in the previous

scheduling event. In this case a percent of the best
solutions obtained in the previous scheduling event are
kept and adjusted while all other elements are
initialized by applying the strategy used to construct
the initial population (e.g. top 10% of the elements are
conserved and the other ones are reinitialized).

 Use of an archive of good schedules obtained in
previous scheduling events. The best schedule
constructed at each previous scheduling event is kept
in an archive and when a new scheduling event is
triggered the population is constructed by taking the
elements in the archive and by filling in the rest of the
population with newly created elements. The archive
has a limited size, thus the old elements are removed
once there is no free space to add elements from the
current scheduling events.

The behavior of both variants has been analyzed and the
main remarks are presented in Section VI. The general
structure of the scheduler corresponding to dynamic
environments is presented in Algorithm 2.

V. AN ANT BASED SCHEDULER

In this section we present a scheduler based on the ant
systems paradigm.

Algorithm 2: The Evolutionary Scheduler in dynamic
environments
1: for each scheduling event se do
2: Construct the list M of available processors
3: if 1se then
4: Construct the initial population as in Algorithm 1
5: Else
6: Construct the initial population using information

from the previous scheduling event (1se)
7: end if
8: Apply the evolutionary steps 4-22 from Algorithm 1
9: Update the archive by adding the best schedule
10: end for

This variant of the scheduler corresponding to the case of
static environments (described in Algorithm 3) is mainly
based on the ideas presented in [12]. The details concerning
the pheromone matrix initialization, the construction of
schedules and local search step are presented in the
following subsections.

Algorithm 3 The general structure of the Ant Scheduler
(AS) for the static environment
1: Initialize the pheromone matrix
2: while the stopping condition is false
3: Reset all ants
4: for each ant do
5: Build a schedule
6: end for
7: Find the best schedule from the current step (*S)
8: Apply rebalancing to the best schedule (*S)
9: Update the pheromone matrix using Eq. 6
10: end while

A. Pheromone initialization

The pheromone matrix is initialized with a constant value

0 . In the experiments, 0 was set with value 0.01

following the suggestions in [12]. In order to help the
construction of good schedules we used the idea of
incorporating information corresponding to a schedule
generated by the MinMin heuristic. This has been done by
reinforcing the elements in the pheromone matrix which
correspond to the MinMin schedule. This is similar with
the incorporation of the MinMin schedule in the initial
population corresponding to the evolutionary scheduler.
The idea to seed some information obtained by a greedy
heuristics is a common approach in evolutionary
scheduling [7] and it also improves the behavior of the ant
based scheduler.

B. Construction of a schedule

Each ant constructs a schedule in n successive steps. At

each step, k , each ant makes two choices. First it chooses

for each unscheduled task, kUi , the processor which

6

would lead to the smallest completion time, i
bestp . Then

the ant chooses the task to be scheduled by using the
probability distribution (over the set of unscheduled tasks):

),(),(

),(),(
)(i

best
i
bestkUi

i
best

i
bestka

k pipi

pipi
iprob

k

 (4)

where kU denotes the list of unscheduled tasks and

0 , 0 are constants controlling the influence of

pheromone value () and of the local cost of pair),(ji :

),()1,,(

1
),(

jiETkSjT
jik
 (5)

In this equation,)1,,(kSjT denotes the time moment

when the processor j becomes free in the context of the

first 1k steps of the schedule S partially constructed by
the ant.

 The pheromone value),(ji is adjusted after each epoch,

e (an epoch correspond to the construction of an entire
schedule by each ant) by using the following rule:

otherwiseji

eSjiif
ems

ji
ji

),(

)(),(
)(

1
),(

),(
*

*

 (5)

where is related to the pheromone evaporation rate and

)(* ems denotes the makespan of the best schedule)(* eS

constructed at the previous epoch (e). At each epoch, each

ant makes n steps and at each step k a task ki is selected.

This selection can be made either by generating ki

according to the probability distribution given in Eq. (4) or
by choosing the task corresponding to the maximal
probability. However in this second case if all ants start
from the same node they will generate the same schedule.

A compromise solution is to choose ki having the maximal

value of)(iproba
k with a probability q and to generate

ki according to the probability distribution given in Eq. (4)

with probability q1 .

C. The rebalancing mechanism

Following the conclusions of previous studies [12] that
local search can significantly improve the behavior of an
ant-based scheduler we applied an improvement step to the
best schedule found at each epoch. This improvement step
is based on a rebalancing operator.

More specifically, in the rebalancing step the same actions
take place like in case of mutation for the evolutionary
scheduler. This operation is repeated for a given number of
times or until no improvement can be obtained.

D. Adaptation to the changes into environment

In the case of a dynamic environment the scheduling
process consists of consecutive scheduling events. At each
scheduling event there is a list of available processors
which is partially different from the list corresponding to
the previous step. If the difference between the list of
available processors is not too large then one can exploit
the schedules constructed at the previous scheduling event.
The pheromone matrix ensures the communication between
ants being shared by all ants at each epoch of a scheduling
event. Thus it seems natural to use it also for
communication between the scheduling events. This means
that when a schedule should be constructed for a new list of
available processors the pheromone matrix is not randomly
initialized but the values computed at the previous
scheduling event are used. The main particularity of this
approach is that the pheromone values corresponding to
unavailable processors are just kept unchanged during the
construction of a new schedule. Once a processor become
available again their corresponding values in the
pheromone matrix become active again and are
transformed by the typical evaporation and reinforcement
operations.

VI. EXPERIMENTAL RESULTS

In the experimental studies we analyzed the behavior of
both the evolutionary scheduler (ES) and the ant scheduler
(AS) in the context of both static and dynamic
environments. The main aim was to identify elements of
these approaches which ensure a good behavior of the
schedulers especially in the case of dynamic environments.

A. Experimental setup

The test data we used are from the benchmark introduced
in [5] which provides matrices containing values of the
expected time for computation (ET) generated based on
different assumptions related to task heterogeneity,
resource heterogeneity and consistency. The heterogeneity
refers to the variance among the execution times of tasks
and processors. With respect to this criterion there are two
main classes: low and high heterogeneity. The benchmark
contains combinations of these classes both for tasks and
for processors. In our analysis we used the data
characterized by highly heterogeneous tasks and
processors. With respect to the consistency there are three
main types of ET matrices: consistent, semi-consistent and
inconsistent. The consistent matrices correspond to the case

when if a processor, ip , executes a task faster than another

processor, jp , then all tasks are executed faster on

processor ip than on processor jp . The consistent

matrices model heterogeneous systems where the
processors vary only with respect to their speed. In the

7

inconsistent case the processor ip can execute some tasks

faster than jp and other ones slower, meaning that the

environment is heterogeneous not only with respect to the
speed of processors but also with respect to other
characteristics which are differently exploited by different
types of tasks (e.g. performances of floating point
arithmetic). Semi-consistent matrices contain consistent
submatrices of given sizes and models environments
consisting of sub-networks of processors which are
different only with respect to their speed. In our
experimental study we used the matrices corresponding to a
high heterogeneous environment corresponding to 512
tasks and 16 processors. Different levels of consistency
were considered, thus we used the first files from classes
"u_c_hihi" (consistent computing environment), "u_i_hihi"
(inconsistent computing environment), "u_s_hihi" (semi-
consistent computing environment).

TABLE I. Average percent of the differences between the lists of
available machines corresponding to consecutive scheduling
events

Unavailable
machines (%)

Average
 (%)

Standard
deviation (%)

10 12 2
20 28 8
40 48 11

In order to simulate the dynamic character of the
environment we generated at each scheduling event a new
list of available processors by just randomly removing a
given percent of processors from the initial list of 16
resources. The percent of unavailable processors we used
in our experiments are 10%, 20% and 40%. The difference
in the lists of available processors corresponding to
consecutive scheduling events varies both with the above
mentioned percent and with the scheduling event. The
average value of the number of differences between lists of
available processors at consecutive steps is presented in
Table I. For a sequence of 50 scheduling events Figure 1
illustrates for each event the number of differences between
the current list of available processors and the previous list.
The value of this difference varies between 0 (when the
percent of removed processors is 10%) and 12 (when the
percent of removed processors is 40%).

B. Comparative results in the static case

Before analyzing the behavior of the evolutionary and ant
schedulers in the simulated dynamic environment we
studied their ability to construct schedules in the static case
for three types of environments: consistent (C), semi-
consistent (S) and inconsistent (I). The results presented in
Table II were obtained for the Evolutionary Scheduler (ES)
described in Algorithm 1 and the Ant Scheduler (AS)
described in Algorithm 3. In the case of ES the population
consists of 200 elements, the number of generations was set
to 1000 (similar to the values used in [7]), the mutation

probability was set to 9.0mp .

0 10 20 30 40 50
se0

2

4

6

8

10

12

DM

Fig. 1. The number of differences (DM) between the lists of available

machines at two consecutive scheduling events (se). The lists of available
machines (processors) is generated at each scheduling event by marking as

unavailable a given percent from the total list of 16 machines. The used
percents are: 10% (thick line), 20% (dashed line), 40% (normal line).

A preliminary parameter study suggested that the

probability, Rp , of selecting the "rebalancing"-mutation

has an influence on the quality of generated schedules but it
should be correlated with the consistency degree of the
environment. Therefore the results presented in Table II for

ES were obtained for 1Rp in the case of a consistent

problem, and for 9.0Rp for semi-consistent and

inconsistent problems. In the case of inconsistent problems

even smaller values of Rp (e.g. 5.0Rp , 25.0Rp)

led to good results, suggesting that in this case the "shift"-
mutation can improve the quality of the schedule. The

probability of random perturbation (Rp in Algorithm 1)

was set to 0.25.

In the case of the Ant Scheduler we used 10 ants and 500
generations. The number of rebalancing steps used to
improve the quality of the schedule constructed by the best
ant was set to 20. The parameter which allowed us to
control the AS behavior was the probability q used in

selecting the task ki to be scheduled at step k . For

consistent and semi-consistent problems the best result was
obtained for 99.0q while for the inconsistent case it

was obtained for 5.0q .

TABLE II. The best makespan obtained by different approaches
Pb. MinMin GA-s [7] ES AS
C 8460675 7752349.4 7768564.9

 30862.5
8263303.8
 258165.7

S 5160342 4371324 4378154.7
 28627.8

 4669991
 58607.2

I 3513919 3080025.8 3020607.2
 40757.1

3023847.1
 15283.6

The results presented in Table II are obtained by 30
independent runs. This table also contains results obtained
for the same problems by the heuristic MinMin and the

8

genetic algorithm (GA) proposed in [7]. The results
obtained by GA [7] are slightly better than those obtained
by our ES and AS in the case of consistent and semi-
consistent problems but, since the standard deviation values
for GA are not provided is hard to evaluate the statistical
significance of this difference. On the other hand both ES
and AS behave better in the inconsistent case.

TABLE III. Ratio of scheduling events when there are
statistically significant differences between the dynamic and static
variants of the ES and AS.

Pb. Unavailable

machines
(%)

ES AS
Dyna-
mic

Static Dyna-
mic

Static

C 10 42/50 0/50 0/50 49/50
C 20 5/50 3/50 2/50 39/50
C 40 1/50 3/50 0/50 30/50
S 10 35/50 1/50 0/50 49/50
S 20 5/50 2/50 5/50 43/50
S 40 0/50 3/50 12/50 35/50
I 10 31/50 0/50 49/50 0/50
I 20 4/50 1/50 39/50 1/50
I 40 0/50 1/50 20/50 2/50

C. Comparative results in the dynamic case

In the case of the simulated dynamic environment we
analyzed the behavior of the dynamic ES described in
Algorithm 2 and of the dynamic AS described in Algorithm
4. In both cases the number of generations (epochs)
corresponding to one scheduling event was set to 50. For
ES the population size was set to 512 while the number of
ants was set to 10_ .

The aim of these experiments was to analyze the impact of
the memory mechanisms (use of previous schedules or
previous values of the pheromones) on the ability of the
evolutionary and ant schedulers to adapt to dynamic
environments. Therefore we computed the ratio between
the makespan of the schedules obtained by the static
variant of the algorithm (which do not use memory
mechanisms) and the makespan of schedules generated by
dynamic variants. Values higher than 1 for this ratio
suggest that the used memory mechanisms are effective. In
the case of the evolutionary scheduler we analyzed the two
variants of using information from previous scheduling
steps presented in subsection IV.E. Better results were
obtained in the case when an archive was used, therefore
all results presented in this subsection correspond to this
case. In the case of the ant based scheduler the memory
mechanism consists in preserving the pheromone matrix
from one scheduling event to the next one and in ”freezing”
the pheromone value corresponding to resources which are
not available during the current scheduling event.

Table III contains the ratio of scheduling events when the
dynamic variants outperformed the static variants and also
the ratio of events when the static ones outperformed the

dynamic ones. In all other cases the static and dynamic
variants behaved similarly. The decision that a variant
outperformed the other one was taken based on comparing
the averages (computed over 30 independent runs) of the
makespan by using a statistical t-test (with a level of
significance of 0.05). The main remark is that the behavior
of the two schedulers is different. In the ES case as long as
the difference between the lists of available machines
corresponding to consecutive events is in average at most
12% (see Table I and Figure 2) then using then using the
archive of previous schedules is beneficial for all
environment types (consistent, semi-consistent,
inconsistent). However the benefit of using a memory
mechanism is larger in the case of consistent environments
(Figure 2) and smaller in the case of inconsistent ones
(Figure 4). In the case of the ant-based scheduler the
memory mechanism based on the preservation of the
pheromone matrix does not lead to improvements over the
static AS variant in the case of consistent environments
(see Table III and Figure 3). On the other hand in the case
of an inconsistent environment the dynamic AS variant
does not only have a better behavior than the static AS but
it also leads to schedules better than those obtained by ES
(see Figure 4).

0 10 20 30 40 50
se0.990

0.995

1.000

1.005

1.010

1.015

1.020
mss msd

Fig. 2. The dependence between the ratio mss/msd (mss is the makespan
obtained by the static ES and msd the makespan obtained by the dynamic

ES) and the scheduling event (se). Test case: consistent behavior of
machines ("u_c_hihi.0"). Percent of unavailable machines: 10% (thick

line), 20% (dashed line), 40% (normal line).

0 10 20 30 40 50
se0.990

0.995

1.000

1.005

1.010

1.015

1.020
mss msd

Fig. 3. The dependence between the ratio mss/msd (mss is the makespan
obtained by the static AS and msd the makespan obtained by the dynamic

AS) and the scheduling event (se). Test case: consistent behavior of
machines ("u_c_hihi.0"). Percent of unavailable machines: 10% (thick

line), 20% (dashed line), 40% (normal line).

9

ES dynamic

AS dynamic

0 10 20 30 40 50
se0.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05
mss msd

Fig. 4. The dependence between the ratio mss/msd (mss is the makespan
obtained by the static versions and msd is the makespan obtained by the
dynamic versions of the algorithms) and the scheduling event (se). Test

case: inconsistent behavior of machines ("u_i_hihi.0"). Percent of
unavailable machines: 10% (thick line), 20% (dashed line), 40% (normal

line).

D. Results of a robustness analysis

There are three properties a good schedule should satisfy:
(i) it should be obtained in a small amount of time; (ii) it
should be easily adapted to a slightly different context; (iii)
it should be robust meaning that it is affected as little as
possible by run time changes [18]. There are at least two
approaches in ensuring the schedules robustness. The first
one is based on overestimating the execution times (this
variant may induce idle times) and the other one is based
on rescheduling the tasks dynamically (in this case it is
important to start from a good schedule which is at least
partially robust).

When analyzing the ability of an algorithm to generate
robust schedule there are a few steps to be followed [18]:
(i) choose a performance metric (e.g. makespan); (ii)
identify the parameters which make the performance metric
uncertain (e.g. the estimation of the execution times); (iii)
find how a modification of these parameters changes the
values of the performance metric; (iv) identify the smallest
variation of a parameter that makes the performance metric
to exceed an acceptable bound. A simple robustness
analysis is can be conducted by firstly construct a schedule
using the current estimates of the execution times, then
generate a large set of perturbed values of the execution
times and recompute the makespan of previously
constructed schedules using the perturbed execution times.

In our experiments we generated a set of 20000 perturbed
execution times by using the following random
perturbation:

)1)(,(),(' jiETjiET (7)

where is a random value uniformly generated in

],[bb with }75.0,5.0,25.0,1.0{b .

The dependence of the average makespans on the noise
bound computed for the perturbed execution times in the
case of schedules generated by the classical MinMin
heuristic and the nature-inspired metaheuristics presented
in this paper (ES and AS) is illustrated in Figure 5 (for
consistent environments) and Figure 6 (for inconsistent
environments). The obtained results suggest that for
consistent environments the MinMin heuristics leads to the
most robuts schedules while in the case of inconsistent
environments the ES and AS schedulers lead to more
robust solutions.

Consistent environment

AS

ES

MinMin

0.1 0.2 0.3 0.4 0.5 0.6 0.7
b

8.5 μ 106

9.0 μ 106

9.5 μ 106

1.0 μ 107
ms

Fig. 5. Robustness analysis results for consistent environments: averaged
makespan (ms) versus noise bound (b).Analyzed schedulers: MinMin

(thick line), ES(dashed line), AS(normal line)

Inconsistent environment

MinMin

ES
AS

0.1 0.2 0.3 0.4 0.5 0.6 0.7
b

3.4 μ 106

3.6 μ 106

3.8 μ 106

ms

Fig. 6. Robustness analysis results for inconsistent environments:

averaged makespan (ms) versus noise bound (b).Analyzed schedulers:
MinMin (thick line), ES(dashed line), AS(normal line)

VII. CONCLUSIONS

The experiments conducted in the static context suggest
that both in the case of the evolutionary scheduler and in
the case of the ant-based scheduler there are two elements
which have a beneficial impact on the quality of the
generated schedules: the use of heuristic in the initialization
phase and the use of a ”rebalancing” operator. In the case
of ES the initial population contains, besides randomly
generated schedules, also schedules fully or partially
constructed using well-known heuristics (e.g. MinMin)
while in the case of AS in the initial pheromone matrix the

10

elements corresponding to the MinMin heuristic are
reinforced. On the other hand the ”rebalancing” operator
based on the idea of moving tasks from the processors with
high load to processors ensuring a smaller makespan
proved to be beneficial for ES especially in the case of
consistent environments. For inconsistent environments
less greedy operators (e.g. the ”shift” operator) proved to
help the construction of good schedules. For the ant-based
scheduler the rebalancing of the schedules constructed by
the best ant also helped in improving its quality. An
important element for the behavior of ES was the random
perturbation used in the selection step which allows the
evolutionary process to preserve the population diversity
and avoid premature convergence. The behavior of ES in
the static case is comparable with the behavior of others
schedulers based on evolutionary algorithms [5], [7]. The
use of information collected from previous scheduling
steps helps both ES and AS to adapt to the environment.
For ES the percent of elements preserved from previous
population(s) should not be larger than 10% in order to lead
to a gain in the quality of evolved schedules with respect to
the static variant. The gain of the dynamic variants over the
static ones is significant if the differences between the lists
of available processors corresponding to consecutive
scheduling events are smaller than 20%. However in the
case of inconsistent environments the ant-based scheduler
with pheromone matrix transferred from one scheduling
step to another leads to better results than the static AS
even if the difference between the lists of available
processors is around 40%. In case of consistent and
semiconsistent data the AS in dynamic case does not
perform well but it seems to improve while the number of
unavailable processors increases.

A similar situation holds also with respect to the robustness
of the generated schedules. The schedules generated by ES
and AS are significantly more robust than the schedules
generated by the MinMin heuristics in the case of
inconsistent environments. On the other hand the MinMin
heuristics lead to more robust schedules in the case of
consistent environments.

ACKNOWLEDGMENTS

This work was supported by the Romanian grant PN-II 11-
028/ 14.09.2007.

REFERENCES

[1] A. Abraham, H. Liu, C. Grosan,F. Xhafa, Nature Inspired Meta-
heuristics for Grid Scheduling: Single and Multi-objective
Optimization Approaches, F. Xhafa, A. Abraham (Eds.): Meta. for
Sched. in Distri. Comp. Envi., SCI 146, pp. 247-272, 2008.

[2] F. Xhafa, A. Abraham, Meta-heuristics for Grid Scheduling
Problems, Metaheuristics for Scheduling: Distributed Computing
Environments, Studies in Computational Intelligence, Springer
Verlag, Germany, pp. 1-37, 2008.

[3] A.M. Mehta, J. Smith, H.J. Siegel, A. Maciejewski, A. Jayaseelan,
B. Ye, Dynamic Resource Allocation Heuristics for Maximizing
Robustness with an Overall Makespan in an Uncertain
Environment, Proceedings of PDPTA 2006, Las Vegas, Nevada,
USA, June 26-29, 2006, vol. 1, 2006.

[4] F. Zamfirache, D. Zaharie, C. Craciun, Evolutionary Task
Scheduling in Static and Dynamic Environments, Proc. ICCC-
CONTI, Timisoara, Romania, 2010.

[5] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M. Maheswaran,
A. I. Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen,
R. F. Freund, A comparison of eleven static heuristics for mapping
a class of independent tasks onto heterogeneous distributed
computing systems. Journal of Parallel and Distributed Computing,
61(6), pp. 810-837, 2001.

[6] F.Xhafa, A. Abraham, Computational models and heuristic
methods for Grid scheduling, Future Generation Computer
Systems, 26, pp. 608-621, 2010.

[7] J. Carretero, F. Xhafa, Using Genetic Algorithms for Scheduling
Jobs in Large Scale Grid Applications. Journal of Technological
and Economic Development - A Research Journal of Vilnius
Gediminas Technical University, 12(1), pp. 11-17, 2006.

[8] B. Sahoo, S. Mohapatra, and S.K. Jena, A Genetic Algorithm Based
Dynamic Load Balancing Scheme for Heterogeneous Distributed
Systems, Proceedings of PDPTA 2008, Las Vegas, Nevada, USA,
July 14-17, 2008, CSREA Press, 2008.

[9] G. V. Iordache, M. S. Boboila, F. Pop, C. Stratan, V. Cristea, A
Decentralized Strategy for Genetic Scheduling in Heterogeneous
Environments. OTM Conferences (2) , pp. 1234-1251, 2006.

[10] R. Prodan, T. Fahringer, Dynamic scheduling of scientific
workflow applications on the grid: a case study. Procs. of ACM
SAC 2005, pp. 687-694, 2005.

[11] S. Fidanova, M. Durchova, Ant Algorithm for Grid Scheduling
Problem. In LNCS 3743, pp. 405-412, 2006.

[12] G. Ritchie, J. Levine, A hybrid ant algorithm for scheduling
independent jobs in heterogeneous computing environments. In
Proceedings the 23rd Workshop of the UK Planning and
Scheduling Special Interest Group, ISSN 1368-5708, 2004.

[13] K. Rzadca, F. Seredynski, Heterogeneous multiprocessor
scheduling with differential evolution, Congress on Evolutionary
Computation IEEE (2005) , pp. 2840-2847,2005.

[14] P. Visalakshi, S. N. Sivanandam, Dynamic Task Scheduling with
Load Balancing using Hybrid Particle Swarm Optimization, Int. J.
Open Problems Compt. Math., 2(3), 2009.

[15] F. Xhafa, B. Duran, A. Abraham, K. Dahal, Tuning Struggle
Strategy in Genetic Algorithms for Scheduling in Computational
Grids, Neural Network World, 18(3), pp. 209-225, 2008.

[16] K. Kousalya, P. Balasubramanie, An enhanced ant algorithm for
grid scheduling problem. In IJCSNS International Journal of
Computer Science and Network Security, vol. 8, no. 4, 2008.

[17] S. Lorpunmanee, M.N. Sap, A.H. Abdulah, C. Chompooinwai, An
ant colony optimization for dynamic job scheduling in grid
environment. In International Journal of Computer and Information
Science and Engineering vol. 1, no. 4, pp. 207-214, 2007.

[18] L.C. Canon, E.Jeannot, R. Sakkellariou and W.Zhang, Comparative
evaluation of the robustness of DAG scheduling heuristics, Grid
Computing, pp. 73-84, 2008.

