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Abstract – Background: Finding optimal assignments of 
tasks to processing elements in heterogeneous computing 
environments is a challenging optimization problem 
which attracted a lot of researchers during the last 
decades. The aim of this paper is to analyze the behavior 
of  two nature inspired approaches for task scheduling in 
static and in dynamic environments. 
Methods: An evolutionary and an ant based schedulers 
are proposed. For each one the selection of adequate 
operators is discussed and some memory based 
mechanisms are investigated in order to asses their ability 
to deal with the dynamic nature of the environment. The 
numerical analysis is based on a well-known benchmark 
for task scheduling in heterogeneous environments and 
the dynamic character of the environment is simulated 
randomly marking some resources as unavailable. 
Results:  Results obtained by three types of experiments 
are provided. The first experiment aims to assess the 
effectiveness of the schedulers in the case of static 
computing environments. The second experiment is 
focused on the comparison between the static and 
dynamic variants of the schedulers tested in the case of 
the simulated dynamic environment. The last experiment 
provides results of a robustness analysis.  
Conclusions: The numerical results illustrate that the 
nature inspired schedulers produce good and robust 
schedules especially in the case of heterogeneous 
computing environments characterized by  inconsistency. 
In the case of dynamic environments the memory 
techniques introduced in the nature inspired schedulers 
proved to be beneficial as long as the ratio of processors 
which become unaivalable between successive scheduling 
events is around 10%.   
 
Keywords:  task scheduling, heterogeneous computing 

environments, evolutionary algorithms, ant 
colony optimization, dynamic optimization 

 
I. INTRODUCTION 

 
The task scheduling problem, i.e. the assignment of tasks to 
resources such that some quality of services criteria are 
optimized, attracted a lot of attention lately [1][2].  As a 
consequence, currently there are a lot of scheduling 

algorithms addressing different variants of the problem. 
The task scheduling variants differ with respect to the tasks 
properties, to the computing environment characteristics 
and to the scheduling process particularities. Thus the set of 
tasks to be scheduled (sometimes called application job or 
meta-task) could consist of independent tasks or of inter-
related ones. In the first case the scheduling problem 
belongs to the unconstrained optimization class, while in 
the second case it is a constrained optimization problem. 
The computing environment can consist of  homogenous 
computing nodes (as in the cases of computational clusters) 
or of heterogeneous resources (as in the case of grid or 
cloud computing). Moreover the availability of resources 
can vary in time, i.e. some of them can become 
unavailable. In this case the computing environment is a 
dynamic one with elements appearing and disappearing 
from the resource pool making the optimization problem a 
dynamic one. On the other hand there are are different 
approaches in mapping tasks to resources [3]: online 
mapping, also called dynamic scheduling, when the tasks 
are mapped as they arrive; batch mapping, when the 
scheduler waits until a given number of tasks arrived; 
pseudo-batch mapping characterized by the fact that always 
when an event occurs (e.g. after a given amount of time) all 
unscheduled tasks are  (re)scheduled. In the case of batch 
mapping the number of tasks to be scheduled is constant 
while in the case pf pseudo-batch mapping the number of 
tasks is variable. 
 
This paper deals with the batch mapping of independent 
tasks in a heterogeneous computing environment 
characterized by a variable set of available resources, i.e. 
batch mapping in a dynamic environment. For instance, let 
us consider a meta-task consisting of a set of independent 
tasks which should be periodically executed on a 
distributed computing environment. This means that there 
are some scheduling events triggered each time the meta-
task should be scheduled again. Between two consecutive 
scheduling events the status of the computing environment 
can change, meaning that some machines become 
unavailable while other ones become available. Moreover, 
the computing environment is usually heterogeneous 
meaning that the execution time of a given task is different 
on different machines. Thus a good schedule corresponding 
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to a given configuration is not necessarily good for another 
configuration. There are two main approaches to deal with 
such a problem: (i) at each scheduling stage a new schedule 
is started from scratch; (ii) in order to construct the 
schedule corresponding to a new stage, some information 
from the previously generated schedule are used.  
 
The main questions arising in the second case are: (i) what 
information from the previous scheduling stages should be 
used in order to construct a new schedule?; (ii) what 
mechanisms should be involved in the metaheuristic used 
to construct the schedule in order to make it appropriate for 
dynamic environments?; (iii) what is the threshold 
corresponding to the percent of changes in the list of 
available machines which allows to obtain benefits from 
using information from the previously obtained schedules? 
 
In this paper we extend the analysis initiated in [4] 
concerning the behavior of several mechanisms of 
exploiting information from previous scheduling stages 
applied to two nature inspired schedulers:  an evolutionary 
one and an ant colony optimization one. The experimental 
analysis is conducted on the benchmark data provided in 
[3] and the dynamic character of the computing 
environment is simulated by randomly marking some 
resources as unavailable.  
 
The rest of the paper is structured as follows. The 
scheduling problem is described in the next section and 
Section III presents a short review of existing nature 
inspired metaheuristics for scheduling. The evolutionary 
scheduler investigated in this paper is described in Section 
IV and the ant based scheduler is presented in Section V.  
The experimental results and their discussion are presented 
in Section VI and the last section concludes the paper. 
 

II. THE TASK SCHEDULING PROBLEM 
 
The task scheduling problem aims to find an allocation of 
resources to tasks such that the tasks requirements 
(hardware, software) and their precedence constraints are 
satisfied and some quality of service criteria (concerning 
response/waiting/completion time, load balancing, data 
transfer costs etc) are optimized. In this paper we shall 
consider that the tasks are independent and the criteria to be 
optimized is the maximal execution time over all resources, 
i.e. makespan. The assignment of tasks is based on 
knowing some estimation of the execution times of the 
different tasks on different resources.  
 
To be more specific, let us consider a set of n  tasks, 

},,{ 1 ntt   to be scheduled on a set of nm  processors 

(machines), },,{ 1 mpp  . Let us suppose that for each 

pair ),( ji pt is known an estimation ),( jiET of the time 

needed to execute the task it on the processor jp . 

A schedule is an ordered sequence of n pairs associating  
processors to  tasks, )),(,),,((

11 nn jiji ptptS  . The 

tuple ),,( 1 nii   denotes a permutation of order n  

specifying the order of allocation of the tasks. In the case of 
independent tasks this order does not influence the quality 
of the schedule but it is important in the case of dependent 
tasks when some order constraints should be satisfied. 
 
There are different quality measures used to evaluate the 
the schedule [6]: makespan, flowtime, imbalance, tardiness, 
lateness. By far the most used measure is  the makespan, 
i.e. the longest execution time over the entire set of 
processors. The makespan can be defined as follows: 

)),((max)(
,1

kk
nk

jiCTSmakespan


                             (1) 

where ),( kk jiCT  denotes the completion time of task 

ki on the processor kj and can be defined by: 

),()1,,(),( kkkkk jiETkSjTjiCT                   (2) 

with )1,,( kSjT k  denoting the time moment since the 

processor kj  is free under the assumption that the tasks 

11
,,

kii tt  are already executed. This is related to the 

completion time of the task scheduled at a previous step on 

processor kj , i.e. 
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(3) 
At the beginning of the scheduling process all processors 
are considered to be free, i.e. 0)0,,( SjT  for any j . 

The aim of the scheduling process analyzed here is to 

identify the schedule *S  having the property that 

)(min)( * SmakespanSmakespan S . 

 
 

III. SHORT REVIEW OF NATURE-INSPIRED 
METAHEURISTICS FOR TASK SCHEDULING 

 
 
Finding the globally optimal schedule is a difficult 
problem, therefore near-optimal solutions are acceptable in 
practice. A lot of heuristics that construct such near-
optimal solutions have been proposed up to now. A 
comparison of 11 such heuristics is presented in [3] for 
several sets of simulated execution times generated such 
they express different characteristics of the computing 
environment and of the set of tasks. The tested heuristics 
include Opportunistic Load Balancing (OLB), Minimum 
Execution Time (MET), Minimum Completion Time 
(MCT), Min-Min, a genetic algorithm, simulated annealing 
and tabu-search. The heuristics with a consistently good 
behavior were Min-Min and the genetic algorithm. The 
Min-Min heuristics, which we also used for comparisons, is 
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a fast greedy approach based on the idea of finding the 
minimum completion time for each task and then assigning 
the task with the smallest completion time to the processor 
ensuring this time. Since the results on effectiveness of 
genetic algorithms in tasks scheduling were presented in 
[3] a lot of other nature inspired metaheuristics were 
successfully applied in solving different variants of the 
scheduling problem: genetic algorithms [7], [8], [9], [10], 
ant colony optimization [11], [12], differential evolution 
[13], particle swarm optimization [14]. Recent reviews of 
different meta-heuristics for tasks scheduling, including the 
nature-inspired ones can be found in [1], [2], [15].  
 
Some of the existing approaches deal with the static 
scheduling problem where the tasks and machines 
characteristics are known apriori and do not change during 
the scheduling process. Such approaches are those 
presented in [3], [15], [12]. On the other hand there are also 
results on online scheduling, meaning that the tasks arrive 
sequentially and they are scheduled as they arrive (e.g. 
[15], [14], [8]). The main approach in online scheduling is 
that based on managing a queue of tasks for each processor 
and in ensuring the load balancing by moving tasks from 
one queue to another one.  
 
One of the main issue addressed in the works studying the 
applicability of evolutionary algorithms in tasks scheduling 
is to identify the appropriate operators. An extensive study 
of different operators is presented in [7] and one of the 
main conclusion of this study is that the best results are 
obtained by using a mutation operator that does a 
rebalancing of the current solution. The aim of rebalancing 
is to move tasks between processors in order to reduce the 
makespan. However there is no detailed description of the 
operation in [7].  The idea of using rebalancing is also 
exploited in [8]. Therefore we also used the idea of 
rebalancing the solutions in the Evolutionary Scheduler 
proposed in Section IV. In [9] is presented a dynamically 
genetic scheduler that operates in batch mode into an 
environment with dynamically changing resources that 
demonstrates the robustness of the evolutionary 
approaches.  In [10] it is proposed a decentralized solution 
for task scheduling that provides better results for 
processors load balancing and makespan. 
 
Currently there are several ant based approaches both for 
static [12], [16], [11] and dynamic scheduling [17]. The 
common element of all these approaches is the fact the 
scheduling problem is formulated as a problem of finding a 
path in a graph. When the tasks are independent this graph 
is fully connected. A node in the graph can correspond to a 
pair (task, processor) as in [11], [16] or to a task as in [12]. 
In the first case the graph has nm   nodes but a schedule 
will be a path with n  nodes while in the second case a 
schedule correspond to a path which visits all nodes in the 
graph. In both cases each ant will build a schedule by 
visiting exactly n  nodes. Each ant passes from one node to 
another one by using a transition probability which depends 
on two main factors, one which is based on a local heuristic 

value related to the current schedule and one related to a 
somewhat global value combining information from all 
ants (the so-called pheromone level). The best results 
reported in the literature [12] were obtained for the ant-
based schedulers which are hybridized with some local 
search operators, which are similar to rebalancing operators 
used in evolutionary approaches. 
 

IV. AN EVOLUTIONARY SCHEDULER 
 
In this section is presented the evolutionary scheduler 
proposed in [4] and its adaptation for the case of periodical 
scheduling in a dynamic environment. The general 
structure of the Evolutionary Scheduler in the case of static 
environments is described in Algorithm 1 and the details 
concerning the solution representation, operators and 
adaptation to dynamic environments are presented in the 
following subsections. 
 
Algorithm 1 The general structure of the Evolutionary 
Scheduler (ES) in static environments 
1: Initialize the population 

)}0(,),0({)0( 1 NxxX   

2: 0g  

3: Evaluate )0(X   

4: while the stopping condition is false do 
5:   Copy )(gX  to )1( gX  

6:     for Ni ,1 do 

7:       Construct the mutant iy  from )(gxi  

8:       if ))(()( gxmakespanymakespan ij  then 

9:         Replace )1( gxi  with iy  

10:      Else 
11:         if ))(()( gxmakespanymakespan ij   then 

12:            Append iy  to )1( gX  

13:        Else 
14:            if  rprand )1,0( then 

15: Replace )1( gxi with a random 

perturbation of iy  

15:            end if 
17:          end if
18:       end if
19:  end for 
20:   Select N  elements from )1( gX  

21:   1 gg  

22: end while 
 
A. Representation of schedules 
 
Since a schedule is a set, )),(,),,((

11 nn jiji ptptS  , 

of pairs (task, processor) each element in the population 
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consists of a n-order permutation ),,( 1 nii  specifying the 

tasks execution order and a mapping of tasks to processors, 

),,( 1 njj  , where kj  belongs to },,1{ m  and 

denotes the index of the processor on which the task of 

index ki will be executed. In the case of scheduling 

independent tasks it is enough to use just the mapping of 
tasks to processors but in the general case when the tasks 
are interrelated, the permutation should also be used in the 
representation. The evolutionary scheduler was designed to 
be easily adapted for the general case of interrelated tasks, 
even if the results presented in this paper are for the case of 
independent tasks. 
 
B. Population initialization 
 
The initial population consists mainly of randomly 
generated schedules. A random schedule consists of a 
random permutation and a random assignment of tasks to 
processors, both being generated by using uniform 
distributions. Besides the fully random schedules there are 
also schedules which are partially generated by random 
assignment of tasks to processors and partially by using a 
greedy like assignment based on the estimated completion 
time of a task on a given processor. More specifically, 
these schedules are generated by executing the following 
steps: 
 a random index },,1{ nr   is selected; 

 the pairs ),(,),,( 11 rr jiji   are randomly generated; 

 for all remaining rn  tasks, the processor is selected 
by the criteria of the minimal estimated completion 
time, e.g. for a task i  is selected the processor j  

satisfying that ),(min),( liETjiET Ml , where M  

denotes the list of available machines (processors). 
 
In our implementation, 75% of the population elements 
were randomly initialized while 25% of elements were 
initialized using the above steps. The idea of this 
initialization procedure started from using partial 
components of the schedule generated by the MinMin 
heuristics. In fact the MinMin schedule has been also 
introduced in the initial population.   
 
The incorporation of the MinMin schedule (or other 
schedules obtained by a non-evolutionary heuristic) as a 
seed in the initial population is a common approach in 
evolutionary scheduling [7]. The proposed initialization 
proved to behave significantly better than that based on 
only random schedules. 
 
C. Mutation operator 
 
Several mutation operators were investigated but finally 
two of them were selected: a "shift"-based mutation and a 
"rebalancing"-based mutation. The "shift"-based mutation 
consists of the following steps: 

 extract a random task from the list of assigned tasks 
and update accordingly the completion time of tasks 
on the processor corresponding to the selected task; 

 assign the selected task to the processor ensuring the 
minimal completion time; 

 append the extracted task to the list of assigned tasks. 
 

If the population element to be mutated consists of the 

tasks permutation ),,( 1 nii   and of processors mapping 

),,( 1 njj  and the selected task has the index ki  then by 

"shift"-based mutation the tasks permutation will become 

),,,,,,( 111 knkk iiiii   and the mapping will be 

),,,,,,( '
111 knkk jjjjj   where '

kj  is the processor 

on which the task ki  is reassigned. On the other hand, the 

"rebalancing"-based mutation does not change the tasks 
permutation but only the assignment of tasks to processors. 
The task to be reassigned and the new processor are 
selected as follows: 
 find the processor with the largest completion time; 
 select a random task from this processor; 
 assign the task to the processor which ensures the 

largest decrease of the makespan; if there is no 
processor ensuring a decrease of the current makespan 
then the mutation is not applied. 
 

Each of these two mutation strategies is applied with a 

given probability: Rp  for "rebalancing" mutation and 

Rp1  for the "shift" mutation. Remarks on the 

appropriate values of Rp  depending on the particularities 

of the problem are presented in Section VI. For each 
element of the population the mutation operator is applied 
for several times, depending on the mutation probability, 

mp . 

 
D. Selection of survivors 
 
After generating the population of mutant individuals the 
elements of the new generation are selected by comparing 
each element in the current population with the 
corresponding mutant. Depending on the quality of these 
two elements there are three main cases and in each one a 
specific decision is taken: 
 The mutant is better than the parent. In this case the 

mutant unconditionally replaces its parent. 
 The mutant and the parent have the same quality. The 

mutant is appended to the population. 
 The mutant is worse than the parent. An extra 

mutation is applied, with a probability rp , to the 

mutant by reassigning a randomly selected task to a 
randomly selected processor and it replaces its parent. 
 

The random perturbation specified in the last case has also 
the aim to stimulate the population diversity. At the end of 
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the selection process it is possible to have more than N 
elements in the population. To reduce the population size to 
the initial value some elements should be eliminated. This 
is usually done by a standard truncation selection. 
 
E. Adaptation to the changes in the environment 
 
In the case of a dynamic environment the scheduling 
process consists of consecutive scheduling events. At each 
scheduling event there is a list of available processors 
which is partially different from the list corresponding to 
the previous step. If the difference between the list of 
available processors is not too large then one can exploit 
the schedules constructed at the previous scheduling event. 
The main idea of using this information is to keep a percent 
of the best elements from the previous population and to 
reinitialize the other elements. The main issue arising in 
such an approach is that the elements from the previous 
scheduling event should be adjusted to the current set of 
available processors. The adjustment is made by assigning 
each task which was previously assigned to a processor 
which is no more available to the fittest available 
processor, i.e. the processor which ensures the minimal 
completion time for that task. This reassignment of tasks is 
made sequentially in the order given by the tasks 
permutation corresponding to the element. 
 
In this paper we analyzed the behavior of two variants of 
using information from the evolutionary process 
corresponding to previous scheduling events: 
 
 Use of good schedules obtained in the previous 

scheduling event. In this case a percent of the best 
solutions obtained in the previous scheduling event are 
kept and adjusted while all other elements are 
initialized by applying the strategy used to construct 
the initial population (e.g. top 10% of the elements are 
conserved and the other ones are reinitialized). 

 Use of an archive of good schedules obtained in 
previous scheduling events. The best schedule 
constructed at each previous scheduling event is kept 
in an archive and when a new scheduling event is 
triggered the population is constructed by taking the 
elements in the archive and by filling in the rest of the 
population with newly created elements. The archive 
has a limited size, thus the old elements are removed 
once there is no free space to add elements from the 
current scheduling events. 

 
The behavior of both variants has been analyzed and the 
main remarks are presented in Section VI. The general 
structure of the scheduler corresponding to dynamic 
environments is presented in Algorithm 2. 
 

V.  AN ANT BASED SCHEDULER 
 
In this section we present a scheduler based on  the ant 
systems paradigm. 
 

Algorithm 2: The Evolutionary Scheduler in dynamic 
environments  
1: for each scheduling event se  do 
2:   Construct the list M of available processors 
3:    if 1se then 
4:     Construct the initial population as in Algorithm 1 
5:    Else 
6: Construct the initial population using information 

from the previous scheduling event ( 1se ) 
7:    end if 
8:   Apply the evolutionary steps 4-22 from Algorithm 1 
9:   Update the archive by adding the best schedule 
10: end for 
 
This variant of the scheduler corresponding to the case of 
static environments (described in Algorithm 3) is mainly 
based on the ideas presented in [12]. The details concerning  
the pheromone matrix initialization, the construction of 
schedules and local search step are presented in the 
following subsections. 
 
Algorithm 3 The general structure of the Ant Scheduler 
(AS) for the static environment 
1: Initialize the pheromone matrix 
2: while the stopping condition is false 
3:   Reset all ants 
4:     for each ant do 
5:       Build a schedule 
6:     end for 
7:     Find the best schedule from the current step ( *S ) 
8:      Apply rebalancing to the best schedule ( *S ) 
9:      Update the pheromone matrix using Eq. 6 
10: end while 

 
A. Pheromone initialization 
 
The pheromone matrix is initialized with a constant value 

0 . In the experiments, 0  was set with value 0.01 

following the suggestions in [12]. In order to help the 
construction of good schedules we used the idea of 
incorporating information corresponding to a schedule 
generated by the MinMin heuristic. This has been done by 
reinforcing the elements in the pheromone matrix which 
correspond to the MinMin schedule. This is similar with 
the incorporation of the MinMin schedule in the initial 
population corresponding to the evolutionary scheduler. 
The idea to seed some information obtained by a greedy 
heuristics is a common approach in evolutionary 
scheduling [7] and it also improves the behavior of the ant  
based scheduler. 
 
B. Construction of a schedule 
 
Each ant constructs a schedule in n  successive steps. At 

each step, k , each ant makes two choices. First it chooses 

for each unscheduled task, kUi , the processor which 
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would lead to the smallest completion time, i
bestp . Then 

the ant chooses the task to be scheduled by using the 
probability distribution (over the set of unscheduled tasks): 

 

 






),(),(

),(),(
)( i

best
i
bestkUi

i
best

i
bestka

k pipi

pipi
iprob

k

             (4) 

where kU  denotes the list of unscheduled tasks and 

0 , 0  are constants controlling the influence of 

pheromone value ( ) and of the local cost of pair ),( ji : 

),()1,,(

1
),(

jiETkSjT
jik 
                         (5)                                           

In this equation, )1,,( kSjT denotes the time moment 

when the processor j  becomes free in the context of the 

first 1k steps of the schedule S partially constructed by 
the ant. 
 
 The pheromone value ),( ji is adjusted after each epoch, 

e (an epoch correspond to the construction of an entire 
schedule by each ant) by using the following rule: 





 





otherwiseji

eSjiif
ems

ji
ji

),(

)(),(
)(

1
),(

),(
*

*



      (5) 

where  is related to the pheromone evaporation rate and 

)(* ems  denotes the makespan of the best schedule )(* eS  

constructed at the previous epoch ( e ). At each epoch, each 

ant makes n  steps and at each step k a task ki  is selected. 

This selection can be made either by generating  ki  

according to the probability distribution given in Eq. (4) or 
by choosing the task corresponding to the maximal 
probability. However in this second case if all ants start 
from the same node they will generate the same schedule.  
 

A compromise solution is to choose ki  having the maximal 

value of )(iproba
k  with  a probability q  and to generate 

ki  according to the probability distribution given in Eq. (4) 

with probability q1 . 

 
C. The rebalancing mechanism 
 
Following the conclusions of previous studies  [12] that 
local search can significantly improve the behavior of an 
ant-based scheduler we applied an improvement step to the 
best schedule found at each epoch. This improvement step 
is based on a rebalancing operator.  
 
More specifically, in the rebalancing step the same actions 
take place like in case of mutation for the evolutionary 
scheduler. This operation is repeated for a given number of 
times or until no improvement can be obtained. 

 
D. Adaptation to the changes into environment 
 
In the case of a dynamic environment the scheduling 
process consists of consecutive scheduling events. At each 
scheduling event there is a list of available processors 
which is partially different from the list corresponding to 
the previous step. If the difference between the list of 
available processors is not too large then one can exploit 
the schedules constructed at the previous scheduling event. 
The pheromone matrix ensures the communication between 
ants being shared by all ants at each epoch of a scheduling 
event. Thus it seems natural to use it also for 
communication between the scheduling events. This means 
that when a schedule should be constructed for a new list of 
available processors the pheromone matrix is not randomly 
initialized but the values computed at the previous 
scheduling event are used. The main particularity of this 
approach is that the pheromone values corresponding to 
unavailable processors are just kept unchanged during the 
construction of a new schedule. Once a processor become 
available again their corresponding values in the 
pheromone matrix become active again and are 
transformed by the typical evaporation and reinforcement 
operations. 

 
 

VI. EXPERIMENTAL RESULTS 
 

In the experimental studies we analyzed the behavior of 
both the evolutionary scheduler (ES) and the ant scheduler 
(AS) in the context of both static and dynamic 
environments. The main aim was to identify elements of 
these approaches which ensure a good behavior of the 
schedulers especially in the case of dynamic environments. 
 
A. Experimental setup 
 
The test data we used are from the benchmark introduced 
in [5] which provides matrices containing values of the 
expected time for computation (ET) generated based on 
different assumptions related to task heterogeneity, 
resource heterogeneity and consistency. The heterogeneity 
refers to the variance among the execution times of tasks 
and processors. With respect to this criterion there are two 
main classes: low and high heterogeneity. The benchmark 
contains combinations of these classes both for tasks and 
for processors. In our analysis we used the data 
characterized by highly heterogeneous tasks and 
processors. With respect to the consistency there are three 
main types of ET matrices: consistent, semi-consistent and 
inconsistent. The consistent matrices correspond to the case 

when if a processor, ip , executes a task faster than another 

processor, jp , then all tasks are executed faster on 

processor ip  than on processor  jp . The consistent 

matrices model heterogeneous systems where the 
processors vary only with respect to their speed. In the 
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inconsistent case the processor ip  can execute some tasks 

faster than jp  and other ones slower, meaning that the 

environment is heterogeneous not only with respect to the 
speed of processors but also with respect to other 
characteristics which are differently exploited by different 
types of tasks (e.g. performances of floating point 
arithmetic). Semi-consistent matrices contain consistent 
submatrices of given sizes and models environments 
consisting of sub-networks of processors which are 
different only with respect to their speed. In our 
experimental study we used the matrices corresponding to a 
high heterogeneous environment corresponding to 512 
tasks and 16 processors. Different levels of consistency 
were considered, thus we used the first files from classes 
"u_c_hihi" (consistent computing environment), "u_i_hihi" 
(inconsistent computing environment), "u_s_hihi" (semi-
consistent computing environment). 
 
TABLE I. Average percent of the differences between the lists of 
available machines corresponding to consecutive scheduling 
events 

Unavailable 
machines (%) 

Average 
 (%) 

Standard 
deviation (%) 

10 12 2 
20 28 8 
40 48 11 

 
In order to simulate the dynamic character of the 
environment we generated at each scheduling event a new 
list of available processors by just randomly removing a 
given percent of processors from the initial list of 16 
resources. The percent of unavailable processors we used 
in our experiments are 10%, 20% and 40%. The difference 
in the lists of available processors corresponding to 
consecutive scheduling events varies both with the above 
mentioned percent and with the scheduling event. The 
average value of the number of differences between lists of 
available processors at consecutive steps is presented in 
Table I. For a sequence of 50 scheduling events Figure 1 
illustrates for each event the number of differences between 
the current list of available processors and the previous list. 
The value of this difference varies between 0 (when the 
percent of removed processors is 10%) and 12 (when the 
percent of removed processors is 40%). 
 
B. Comparative results in the static case 
 
Before analyzing the behavior of the evolutionary and ant 
schedulers in the simulated dynamic environment we 
studied their ability to construct schedules in the static case 
for three types of environments: consistent (C), semi-
consistent (S) and inconsistent (I). The results presented in 
Table II were obtained for the Evolutionary Scheduler (ES) 
described in Algorithm 1 and the Ant Scheduler (AS) 
described in Algorithm 3. In the case of ES the population 
consists of 200 elements, the number of generations was set 
to 1000 (similar to the values used in [7]), the mutation 

probability was set to 9.0mp . 
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Fig. 1. The number of differences (DM) between the lists of available 

machines at two consecutive scheduling events (se). The lists of available 
machines (processors) is generated at each scheduling event by marking as 

unavailable a given percent from the total list of 16 machines. The used 
percents are: 10% (thick line), 20% (dashed line), 40% (normal line). 

 
A preliminary parameter study suggested that the 

probability, Rp , of selecting the "rebalancing"-mutation 

has an influence on the quality of generated schedules but it 
should be correlated with the consistency degree of the 
environment. Therefore the results presented in Table II for 

ES were obtained for 1Rp  in the case of a consistent 

problem, and for 9.0Rp  for semi-consistent and 

inconsistent problems. In the case of inconsistent problems 

even smaller values of Rp  (e.g. 5.0Rp , 25.0Rp ) 

led to good results, suggesting that in this case the "shift"-
mutation can improve the quality of the schedule. The 

probability of random perturbation ( Rp  in Algorithm 1) 

was set to 0.25. 
 
In the case of the Ant Scheduler we used 10 ants and 500 
generations. The number of rebalancing steps used to 
improve the quality of the schedule constructed by the best 
ant was set to 20. The parameter which allowed us to 
control the AS behavior was the probability q  used in 

selecting the task ki  to be scheduled at step k . For 

consistent and semi-consistent problems the best result was 
obtained for 99.0q while for the inconsistent case it 

was obtained for 5.0q . 
 
TABLE II. The best makespan obtained by different approaches 
Pb. MinMin GA-s [7] ES AS 
C 8460675 7752349.4 7768564.9 

 30862.5 
8263303.8 
 258165.7 

S 5160342 4371324 4378154.7 
 28627.8 

 4669991 
 58607.2 

I 3513919 3080025.8 3020607.2 
 40757.1 

3023847.1 
 15283.6 

 
The results presented in Table II are obtained by 30 
independent runs. This table also contains results obtained 
for the same problems by the heuristic MinMin and the 
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genetic algorithm (GA) proposed in [7]. The results 
obtained by GA [7] are slightly better than those obtained 
by our ES and AS in the case of consistent and semi-
consistent problems but, since the standard deviation values 
for GA are not provided is hard to evaluate the statistical 
significance of this difference. On the other hand both ES 
and AS behave better in the inconsistent case.  
 
TABLE III. Ratio of scheduling events when there are 
statistically significant differences between the dynamic and static 
variants of the ES and AS. 
 
Pb. Unavailable 

machines 
(%) 

ES AS 
Dyna-
mic 

Static Dyna-
mic 

Static 

C 10 42/50 0/50 0/50 49/50 
C 20 5/50 3/50 2/50 39/50 
C 40 1/50 3/50 0/50 30/50 
S 10 35/50 1/50 0/50 49/50 
S 20 5/50 2/50 5/50 43/50 
S 40 0/50 3/50 12/50 35/50 
I 10 31/50 0/50 49/50 0/50 
I 20 4/50 1/50 39/50 1/50 
I 40 0/50 1/50 20/50 2/50 

 
C. Comparative results in the dynamic case 
 
In the case of the simulated dynamic environment we 
analyzed the behavior of the dynamic ES described in 
Algorithm 2 and of the dynamic AS described in Algorithm 
4.  In both cases the number of generations (epochs) 
corresponding to one scheduling event was set to 50. For 
ES the population size was set to 512    while the number of 
ants was  set to 10_ .  
 
The aim of these experiments was to analyze the impact of 
the memory mechanisms (use of previous schedules or 
previous values of the pheromones) on the ability of the 
evolutionary and ant schedulers to adapt to dynamic 
environments. Therefore we computed the ratio between 
the makespan of the schedules obtained by the static 
variant of the algorithm (which do not use memory 
mechanisms) and the makespan of schedules generated by 
dynamic variants. Values higher than 1 for this ratio 
suggest that the used memory mechanisms are effective. In 
the case of the evolutionary scheduler we analyzed the two 
variants of using information from previous scheduling 
steps presented in subsection IV.E. Better results were 
obtained in the case when an archive was used, therefore 
all results presented in this subsection correspond to this 
case.  In the case of the ant based scheduler the memory 
mechanism consists in preserving the pheromone matrix 
from one scheduling event to the next one and in ”freezing” 
the pheromone value corresponding to resources which are 
not available during the current scheduling event. 
 
Table III contains the ratio of scheduling events when the 
dynamic variants outperformed the static variants and also 
the ratio of events when the static ones outperformed the 

dynamic ones. In all other cases the static and dynamic 
variants behaved similarly. The decision that a variant 
outperformed the other one was taken based on comparing 
the averages (computed over 30 independent runs) of the 
makespan by using a statistical t-test (with a level of 
significance of 0.05). The main remark is that the behavior 
of the two schedulers is different. In the ES case as long as 
the difference between the lists of available machines 
corresponding to consecutive events is in average at most 
12% (see Table I and Figure 2) then using then using the 
archive of previous schedules is beneficial for all 
environment types (consistent, semi-consistent, 
inconsistent). However the benefit of using a memory 
mechanism is larger in the case of consistent environments 
(Figure 2) and smaller in the case of inconsistent ones 
(Figure 4). In the case of the ant-based scheduler the 
memory mechanism based on the preservation of the 
pheromone matrix does not lead to improvements over the 
static AS variant in the case of consistent environments 
(see Table III and Figure 3). On the other hand in the case 
of an inconsistent environment the dynamic AS variant 
does not only have a better behavior than the static AS but 
it also leads to schedules better than those obtained by ES 
(see Figure 4). 
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Fig. 2. The dependence between the ratio mss/msd (mss is the makespan 
obtained by the static ES and msd the makespan obtained by the dynamic 

ES) and the scheduling event (se). Test case: consistent behavior of 
machines ("u_c_hihi.0"). Percent of unavailable machines: 10% (thick 

line), 20% (dashed line), 40% (normal line). 
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Fig. 3. The dependence between the ratio mss/msd (mss is the makespan 
obtained by the static AS and msd the makespan obtained by the dynamic 

AS) and the scheduling event (se). Test case: consistent behavior of 
machines ("u_c_hihi.0"). Percent of unavailable machines: 10% (thick 

line), 20% (dashed line), 40% (normal line). 
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Fig. 4. The dependence between the ratio mss/msd (mss is the makespan 
obtained by the static versions and msd is the makespan obtained by the 
dynamic versions of the algorithms) and the scheduling event (se). Test 

case: inconsistent behavior of machines ("u_i_hihi.0"). Percent of 
unavailable machines: 10% (thick line), 20% (dashed line), 40% (normal 

line). 

 
D. Results of  a  robustness analysis 

 
There are three properties a good schedule should satisfy: 
(i) it  should be obtained in a small amount of time; (ii) it 
should be easily adapted to a slightly different context; (iii) 
it should be robust meaning that it is affected as little as 
possible by run time changes [18]. There are at least two 
approaches in ensuring the schedules robustness. The first 
one is based on overestimating the execution times (this 
variant may induce idle times) and the other one is based 
on rescheduling the tasks dynamically (in this case it is 
important to start from a good schedule which is at least 
partially robust). 
 
When analyzing the ability of an algorithm to generate 
robust schedule there are a few steps to be followed [18]: 
(i) choose a performance metric (e.g. makespan); (ii) 
identify the parameters which make the performance metric 
uncertain (e.g. the estimation of the execution times); (iii) 
find how a modification of these parameters changes the 
values of the performance metric; (iv) identify the smallest 
variation of a parameter that makes the performance metric 
to exceed an acceptable bound. A simple robustness 
analysis is can be conducted by firstly construct a schedule 
using the current estimates of the execution times, then 
generate a large set of perturbed values of the execution 
times  and recompute the makespan of previously 
constructed schedules using the perturbed execution times.  
 
In our experiments we generated a set of 20000 perturbed 
execution times by using the following random 
perturbation: 
 

)1)(,(),('  jiETjiET                                        (7) 

where  is a random value uniformly generated in 

],[ bb  with }75.0,5.0,25.0,1.0{b .  

 

The dependence of the average makespans on the noise 
bound computed for the perturbed execution times in the 
case of schedules generated by the classical MinMin 
heuristic and the nature-inspired metaheuristics presented 
in this paper (ES and AS) is illustrated in Figure 5 (for 
consistent environments) and Figure 6  (for inconsistent 
environments). The obtained results suggest that for 
consistent environments the MinMin heuristics leads to the 
most robuts schedules while in the case of inconsistent 
environments the ES and AS schedulers lead to more 
robust solutions. 

 

Consistent environment

AS

ES

MinMin

0.1 0.2 0.3 0.4 0.5 0.6 0.7
b

8.5 μ 106

9.0 μ 106

9.5 μ 106

1.0 μ 107
ms

 
 

Fig. 5. Robustness analysis results for consistent environments: averaged 
makespan (ms) versus noise bound (b).Analyzed schedulers: MinMin 

(thick line), ES(dashed line), AS(normal line) 
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Fig. 6. Robustness analysis results for inconsistent environments: 

averaged makespan (ms) versus noise bound (b).Analyzed schedulers: 
MinMin (thick line), ES(dashed line), AS(normal line) 

 

 
 

VII. CONCLUSIONS 
 

 
The experiments conducted in the static context suggest 
that both in the case of the evolutionary scheduler and in 
the case of the ant-based scheduler there are two elements 
which have a beneficial impact on the quality of the 
generated schedules: the use of heuristic in the initialization 
phase and the use of a ”rebalancing” operator. In the case 
of ES the initial population contains, besides randomly 
generated schedules, also schedules fully or partially 
constructed using well-known heuristics (e.g. MinMin) 
while in the case of AS in the initial pheromone matrix the 



 

10 

elements corresponding to the MinMin heuristic are 
reinforced. On the other hand the ”rebalancing” operator 
based on the idea of moving tasks from the processors with 
high load to processors ensuring a smaller makespan 
proved to be beneficial for ES especially in the case of 
consistent environments. For inconsistent environments 
less greedy operators (e.g. the ”shift” operator) proved to 
help the construction of good schedules. For the ant-based 
scheduler the rebalancing of the schedules constructed by 
the best ant also helped in improving its quality. An 
important element for the behavior of ES was the random 
perturbation used in the selection step which allows the 
evolutionary process to preserve the population diversity 
and avoid premature convergence.  The behavior of ES in 
the static case is comparable with the behavior of others 
schedulers based on evolutionary algorithms [5], [7]. The 
use of information collected from previous scheduling 
steps helps both ES and AS to adapt to the environment. 
For ES the percent of elements preserved from previous 
population(s) should not be larger than 10% in order to lead 
to a gain in the quality of evolved schedules with respect to 
the static variant. The gain of the dynamic variants over the 
static ones is significant if the differences between the lists 
of available processors corresponding to consecutive 
scheduling events are smaller than 20%. However in the 
case of inconsistent environments the ant-based scheduler 
with pheromone matrix transferred from one scheduling 
step to another leads to better results than the static AS 
even if the difference between the lists of available 
processors is around 40%. In case of consistent and 
semiconsistent data the AS in dynamic case does not 
perform well but it seems to improve while the number of 
unavailable processors increases. 
 
A similar situation holds also with respect to the robustness 
of the generated schedules. The schedules generated by ES 
and AS are significantly more robust than the schedules 
generated by the MinMin heuristics in the case of 
inconsistent environments. On the other hand the MinMin 
heuristics lead to more robust schedules in the case of 
consistent environments.  
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