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Abstract. The aim of this paper is to analyze the impact on the expected pop-
ulation mean and variance of several variants of mutation and crossover operators
used in differential evolution algorithms. As a consequence of this analysis a simple
variance based mutation operator which does not use differences but has the same
impact on the population variance as classical differential evolution operators is
proposed. A preliminary analysis of the distribution probability of the population
in the case of a differential evolution algorithm for binary encoding is also presented.
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1 Introduction

The analysis of the population dynamics induced by evolutionary operators is
an important issue in understanding the behavior of evolutionary algorithms
and in inferring rules about choosing adequate operators and control param-
eters. There are two main approaches in analyzing the dynamics of an evo-
lutionary algorithm (Okabe (2005)): a cumulants based approach which tries
to describe the dynamics by using cumulants (e.g. mean, variance etc.) and
a model based approach which tries to build a probability model of the pop-
ulation based on the properties of the operators. Most results were obtained
in the case of mutation operators based on normally distributed additive per-
turbations (Beyer (1998)). In the case of other evolutionary operators similar
studies are significantly fewer. This is also the case of Differential Evolution
(DE), a successful stochastic heuristic for global optimization for which the
theoretical results on the impact of operators on the population properties
are still limited. DE was introduced in (Storn and Price (1995)) and is based
on a particular way of constructing so-called mutant vectors by using dif-
ferences between randomly selected elements from the current population.
Unlike stochastic mutation, typical to evolution strategies, the DE mutation
uses only information extracted from the current population. For each mutant
vector, a trial vector is constructed through a crossover operation. This trial
vector competes with the corresponding element of the current population
and the best one, with respect to the objective function, is transferred into
the next generation. In the following we shall consider objective functions,
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f:D CR" = R, to be minimized thus we are dealing with minimization
problems of size n. The overall structure of DE (see Algorithm 1) is typical
for evolutionary algorithms, the particularities of the algorithm being related
with the mutation and crossover operators. By combining different DE mu-
tation and crossover operators various schemes have been designed. In the
DE literature these schemes are specified by using the convention DE/a/b/c
where a denotes the manner of constructing the mutant vector, b denotes the
number of differences involved in the construction of the mutant vector and
¢ denotes the crossover type.

Population initialization: X (0) < {z1(0),... ,2m(0)}
g« 0
while the stopping condition is false do
fori=1m
y; < generateMutant(X (g))
z; <—crossover(z;(g),yi)
if f(z:) < f(zi(g)) then z;(g + 1) « z; else z;(g+ 1) + zi(g)
endfor
gg+1
endwhile

Fig. 1. The overall structure of a generational DE

Previous work on analyzing DE behavior by using a model-based ap-
proach is presented in Xue et al. (2005) and in Ali and Fatti (2006). Xue et
al. analyze the impact of mutation on the population distribution starting
from the assumption that the population current has a normal distribution.
On the other hand, Ali and Fatti derive a rather sophisticated distribution
probability which corresponds to the offspring obtained by mutation starting
from a population uniformly distributed in the search space. The cumulants
based approach is used in Zaharie (2002) where the influence of DE mutation
and binomial crossover on the expected population variance is analyzed.

The main aim of this paper is to extend the results presented in Zaharie
(2002) and in Zaharie (2007) for other crossover variants and to analyze a
simple variance based mutation. The next section presents the mutation and
crossover operators involved in the analysis while the main theoretical results
are presented in Section 3. A variance based mutation having a behavior
similar to DE/rand/1/* with respect to the impact on the population variance
is presented in Section 4. Section 5 presents some preliminary results on a
DE for binary encoding and Section 6 concludes the paper.

2 Differential evolution operators

2.1 Mutation operators

Mutation in differential evolution algorithms has the role of constructing
mutant vectors by perturbing elements of the current population. The main
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particularity of DE mutation is the fact that the perturbation term is related
with the difference between some randomly selected elements. Such a differ-
ence based mutation operator is more related to a recombination than to a
classical mutation operator. Its main property is the fact that it acts as a
self-referential mutation allowing a gradual exploration of the search space.
The general form of the standard DE mutation is:

L
yi:)‘m*+(1_)‘)w1i +Z-Fl'($Ju _JUK“); i=1,m (1)
=1

where z, is the best element of the current population, A € [0,1] is a coef-
ficient which controls the influence of the best element, L is the number of
differences, F; > 0 is for each [ € {1,...,L} a scaling factor. I;, J; and Ky
are random values uniformly selected from {1,... ,m} and such that they are
distinct. Most frequently used particular cases are when L = 1 and A € {0,1}.
Thus for A = 0 one obtains the DE/rand/1/* variant:

Yi =2, +F'($Ji _mKi)J i:17m (2)

and for A = 1 one obtains the DE/best/1/* variant:

Yi =@ + F - (x5, — TK,), i=1,m. 3)

Other simple variants of these mutation operators are obtained by replacing
the constant F' with a random variable, £&. Examples of such variants are
when £ ~ N(0, F) (in Abbas (2001)), £ ~ N(F,0) (in Ronkkonen (2003)) or
even § ~ U[Fmin; Fmaw]-

2.2 Crossover operators

In Evolutionary Algorithms the crossover operator usually combines features
from different parents. In the case of DE algorithms, since the mutation oper-
ator is already based on a recombination of individuals, the role of crossover
is somewhat different. It just allows the construction of an offspring by com-
bining the current element and that generated by mutation. This can be
ensured either by mixing the components (as in binomial and exponential
DE crossover) or by an arithmetical recombination between the current and
the mutant elements (as in the DE/current-to-rand variants). In the case of
binomial crossover the components of the trial element z; are obtained as:

j:{y{ if U;(0,1) < CR or j = jo

j . i=Lmj=Tn (4
¢ z] otherwise J @

where U;(0,1) is a random value uniformly distributed in [0,1], jo is a
randomly selected value from {1,...,n} and CR € [0,1] is a parameter
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which controls the number of components taken from the mutant vector,
y;, and is called crossover rate. The number of components taken form the
mutant vector follows a binomial distribution of parameters n and p, =
CR(1—-1/n)+1/n. The value p,, can be interpreted as mutation probability
as long as it specifies the probability for a component to be taken from the
mutant vector.

In the exponential crossover the trial vector is constructed by taking con-
secutive components from the mutant:

j— [l for j € {jo, o+ Dy s (o + L= 1)} %)
¢ x] otherwise

In eq. (5) jo is a randomly selected index, (j), denotes the remainder of the
division of j by n plus 1 and L is a random variable which follows a truncated
geometric distribution (Zaharie (2007)). In this case the mutation probability
satisfies:

1-CR"
DPm =

- n(l1-CR) ©)

The arithmetical recombination consists in a convex combination of the cur-
rent and mutant vector. Thus

2 = (]- - q)mz + qyi, i= ]-am (7)

with ¢ € [0, 1] controlling the relative weight of the mutant vector. In some im-
plementations (see for instance Mezura et.al (2006)) the arithmetical crossover
is used just as a second step in generating the mutant vector while the trial
vector is obtained by mixing the components of the vector given in Eq. (7)
with the current element using binomial or exponential crossover.

3 Influence of mutation and crossover on the
population mean and variance

As aresult of the application of evolutionary operators the population changes
its distribution. The parameters of the population distribution, especially the
mean and variance, can give information about the region in the search space
where the population is concentrated and about its diversity. A population
can be interpreted as a set of random vectors, but since all components are
evolved based on the same rule the analysis can be conducted component-
wise. In the following we shall analyze the impact of several DE mutation and
crossover operators on the population mean and variance. Let us denote by
{X1,...,Xm} the current population and by {Zi,...,Z,} the population
obtained after mutation and crossover. Each element of this population is
a random variable Z; =Y; - 1y, + X; - 137, with 1,7, denoting the indica-
tor function corresponding to the event that Z; equals the mutant element,



Statistical Properties of Differential Evolution 5

Y;. Thus 1 is a random variable with the mean E(1a;) = pp,. Similarly
E(13z,) = 1—pp. The difference between binomial and exponential crossover
is given only by different means of 1, and 147..

As mutation operators we shall analyze the following variants:

L
Yi =X + (1 - ’\)XL + Z&l . (XJil - XKu) (8)
=1
and
Yi= (1—77)Xz'+77XL- +§ (XJi _XKi) (9)

In eq. (8) X. denotes the best element of the current population, A € [0, 1] and
& denote random variables independent with respect to all other variables.
The most known case is when L = 1 and £ is constant and equal to the
scaling factor, F. If A = 0 one obtains the DE/rand/1/* variant and when
A =1 one have the DE/best/1/* variant.

In eq. (9), n is usually a random variable on [0, 1]. This variant is related
both to current-to-rand variants and to those which use arithmetical recom-
bination (in the case when n = ¢ and £ = ¢ - F). In both cases I;, J; and K;
are uniformly distributed on {1,...m} and have distinct values.

In the following we shall estimate the expected mean and variance of
the population obtained by applying mutation and crossover. The expected

mean, E(Z), of a population {Z1,... , Z,} of identically distributed random

variables equals E(Z;) for an arbitrary ¢. Thus E(Z) = E(Z;) = pnE(Y;) +

(1—pm)E(X;). Since for any random index I one have that E(X;) = E(X) it

follows that in the case of eq. (8) one have that E(Y;) = AX, + (1 — M) E(X),
thus E(Z) = ppA X« + (1 = pA)E(X). Therefore when A = 0 the expected
population mean remains unchanged by mutation and crossover. When A > 0
the population mean is biased toward the best element of the population.
It is easy to check that the property of conserving the population mean
is also true in the case of the mutation specified by eq. (9). The impact
of selection depends on the objective function and is more difficult to be
analyzed. However it is easy to see that after selection, the mean of the
objective function values corresponding to the population elements decreases
for all variants of mutation and crossover.

Let us turn now to the analysis of the expected population variance.
Preserving the population diversity plays an important role in avoiding pre-
mature convergence and in stimulating the ability of differential evolution
to follow dynamic optima. A natural measure of the diversity of a popula-
tion of scalars, X = {X1,...,Xn}, is the population variance Var(X) =
Pici(Xi — X;)?/m?. In the case of populations of vectors the average of
componentwise variances can be considered as a measure of diversity. In the
following we shall analyze, in the one-dimensional case, the impact on the
population variance of the mutation variants given by egs. (8) and (9) com-
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bined with binomial, exponential and arithmetical crossover. In all cases we
estimate the expected population variance, E(Var(Z)).

Proposition 1. The expected population variance after mutation and crossover
18:

E(Var(2)) = (1+2pm Liy B(E) - 22222 — 2, 221) B(Var(X)
NP (1 = ) BELE((X. — X1,)?)
(10)

in the case of mutation operator given by (8) and

E(Var(Z)) = (1+2pm (E?) — = E(n) + E(E?))

2 (1)
2= (2B(n) + E(r*))) E(Var(X))

in the case of mutation operator given by (9).

Proof. See Appendix.

In Proposition 1, p,, is given by p,, = CR(1 —1/n) + 1/n in the case of
binomial crossover and by eq. (6) in the case of exponential crossover. Im-
portant particular cases of eq. (10) are when A = 0 and p,,, = 1. By denoting
F? =Y | E(£) we have in the first case:

E(Var(Z)) = (1 4 2 F? — ’W) E(Var(X)) (12)
and in the second
E(Var(Z)) = ((1 - )\)mT_l + 2F2) E(Var(X)). (13)

When 7 is a constant ¢, F(¢2) = F? and p,, = 1 one obtains a simple
current-to-rand version for which the eq. (11) becomes:

2m —

E(WVar(Z2)) = (1 +2F% —2¢+ 1q2) E(Var(X)). (14)

If F? is replaced with ¢?F? then eq. (14) corresponds to the DE/rand/1

variant combined with arithmetical crossover. On the other hand, when 7 is
uniformly distributed on [0, 1] and p,, € [0, 1] then

E(Var(Z)) = (1 + 2pm F? — %(41)2” + (m — 3)pm)) E(Var(X)). (15)

In almost all cases (except for the case when A > 0 and p,,, < 1) there is a
simple linear relationship between the expected variance of the population
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Fig. 2. Dependence between the variance factor, ¢, and F for DE/rand/1/* (dashed
line) and DE/current-to-rand/1/* with n € U(0, 1)(continuous line). Parameters:
m =n =50, CR = 0.1 (left) and CR = 0.9 (right).
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Fig. 3. Dependence between the variance factor,c, and CR for DE/rand/1/*
(dashed line) and DE/current-to-rand/1/* with n € U(0, 1) (continuous line). Bi-
nomial crossover: linear dependence, exponential crossover: nonlinear dependence.
Parameters: m =n = 50, F = 0.2 (left) and F = 1 (right).

obtained by mutation and crossover and the variance of the current pop-
ulation: E(Var(Z)) = ¢(CR,F,q,m,n)E(Var(X)). The coefficient of this
dependence involves all parameters which influence the algorithm behavior.
The advantage of such a property is the fact that one can control the impact
which mutation and crossover have on the population variance by changing
the values of the parameters involved in c. Figures 2,3,4 and 5 illustrate the
dependence of the factor ¢(CR, F,q,m,n) on the values of parameters and
on the algorithm type. The main remarks are: (i) ¢ usually increases with
CR and F but in a different way in the case of binomial and exponential
crossover; (i) the DE/current-to-rand variant is characterized by values of ¢
slightly smaller than DE/rand; moreover, for small values of F' (e.g. F' = 0.2)
¢ decreases when C'R increases; (#44) the ratio m/n does not significantly in-
fluence the factor ¢, meaning that using larger populations does not stimulate
the population diversity; (iv) both in the case of DE/best and DE/current-
to-rand the variance is significantly increasing with the value of F' but it
decreases with A and has a non-monotonous behavior with respect to q.
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Fig. 4. Dependence of the variance factor, ¢, on the population size factor, s
(m = sn) for DE/rand/1/* (dashed line) and DE/current-to-rand/1/* with
n € U(0,1)(continuous line). Parameters: CR = 0.5, F = 1, n = 10 (left) and
n =100 (right).
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Fig. 5. Dependence of the variance factor, ¢, on the parameter A in the case of
DE/best-to-rand (left) and on parameter g in the case of DE/current-to-rand when
7 = q (right). Parameters: CR = 1, m = n = 50.

4 A simple variance based variant

Classical mutation operators based on an additive perturbation also lead
to a linear dependence but with a non zero free term, i.e. E(Var(Z)) =
aBE(Var(X)) +b. Let us consider the case when Z; = (X, +&)1m, + Xilgg
with E(M;) = pn and &; independent random variables having E(§;) = 0
and E(£?) = F?. In this case one obtains that E(Var(Z)) = (1 + p2,/m —
2pm/m)E(Var(X)) + 2pn(m — 1)/mE?. Tt is easy to see that if E(£2) =
F2E(Var(X))m/(m — 1) one obtains the same dependence between the ex-
pected variances as in the case of mutation given by eq. (8) with A = 0 and
L = 1. Thus using the mutation rule

LVar(acJ')N(O, 1),

m—1 (16)

yl=2y+F i=Tn
where Var(z7) is the variance of the current population corresponding to the
jth component, one obtains a simple mutation rule which combined with a
crossover strategy leads to the same behavior with respect to the evolution

of the population variance as DE/rand/1/*. Empirical studies conducted for
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classical test functions show that the mutation given by eq. (16) behaves
better than a simple evolution strategy based on a normal perturbation of
distribution N (0, F). Table 1 presents results obtained by 30 independent
runs of the algorithms on Griewank test function for n = 100. The maximal
number of function evaluations (nfe) is set to 500000 and a run is considered
successful if the best value of the population (f*) is less than e = 1078.
These results illustrate the fact that for some pairs of values (CR, F') the
variance based mutation leads to a behavior similar to that of DE. Thus by
just ensuring that the population variance have the same dynamics one can
partially reproduce the behavior of DE. On the other hand, the empirical
results show that the difference-based perturbation cannot just be replaced
with a variance-based perturbation since for other values of parameters or
for other test functions the difference-based mutation leads to better results
than the variance-based one.

5 Binary differential evolution

Encouraged by the success of DE in continuous optimization several authors
recently proposed variants of DE for binary encoding (Gong (2006)). A sim-
ple approach is just to use the classical operators in order to evolve trial
vectors in [0,1]™ and transform their components in binary values, using a
threshold function, only when the objective function is to be evaluated. The
variant which we analyze uses a binary encoding and is based on the following
mutation rule, inspired from (Gong (2006)):

Y/ =

k3

{mJL if xf]l = wjki orU>F (17)

1 — 27, otherwise

where F € [0,1] and U is a random value uniformly generated in [0, 1]. The
components of the trial vector, Z;, are obtained by applying one of the DE
crossover operators. Disregarding the type of crossover we shall denote by
pm the probability that a component in the trial vector is taken from the
mutant vector. In the following we shall analyze the influence the mutation
and crossover have on the distribution of a population of scalar elements.

Let (po,p1) be the probability distribution of the current population (py
is the probability that a randomly selected element has the value 0). Thus
for two randomly selected elements x g, and z;, we have that

Prob(zk, = xj,) = pg —}—p% and Prob(zk, # J,) = 2pop1 (18)

It follows that Prob(Y; = 0) = po(p§ + pi) + 2Fpopi + 2(1 — F)popi and
Prob(Y; = 1) = p1(P2 + p?) + 2Fpip1 + 2(1 — F)p3p:. Consequently, the
probabilities corresponding to the trial element Z; are Prob(Z; = 0) = po(1+
2pmFp1(p1 —po)) and Prob(Z; = 1) = p1 (1+2pm Fpo(po —p1))- On the other
hand, in the case of a simple binary mutation (Z; = 1 — X; with probability
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Table 1. Comparative results of DE/rand/1/bin, variance based mutation
(var/bin) and normal mutation (norm/bin) combined with binomial crossover. Test
function: Griewank. Parameters: m = n = 100.

CRF DE/rand/1/bin var/bin norm/bin
(™ Success (" Success (" Success
stdev(f*) (nfe) stdev(f*) (nfe) stdev(f*) (nfe)
0105 9-10° 30/30 9-10 9 30/30 0.3304  0/30
+10710  (380416) +£107'C  (190290) +0.3134 (500000)

05 0.5 107* 0/30 9-107°  30/30 0.2890  0/30
+107%  (500000) +£107'°  (204703) +0.087  (500000)
0.9 0.5 0.0078 18/30 1.27-107% 27/30 0.5523  0/30
+0.0125 (306933) +107%  (470792) 40.039  (500000)
0.1 0.2 9-107% 30/30 0.0158  24/30 0.6352  0/30
+2.107' (137090)  0.0318 (131887)  +0.365  (500000)
0.5 0.2 0.0959 18/30 1.3469  0/30 04322 0/30

+0.1657 (87666)  1.5373  (500000) =+0.3319 (500000)

Prob(Z=0) Prob(Z=0)
10¢ 10¢
0.8} 0.8}

0.6 0.6+

04} 04} pp=0:

0.2}

02 [ ,/"”,«,,,,,M,,

: : : ' po 00 : : : : ' po
04 06 08 10 00 02 04 06 08 10

Fig. 6. Dependence of Prob(Z; = 0) on po and p,, in the case of binary DE mutation
(left) and classical binary mutation (right)

Pm) the corresponding probabilities are Prob(Z; = 0) = po + pm (p1 — po) and
Prob(Z; = 1) = p1 + pm(po — p1)- The different impact on the population
distribution of the DE binary mutation and of the classical binary mutation
is illustrated in Figure 6. Unlike the classical binary mutation, the DE binary
mutation leads to small changes in the population distribution for all values
of pp,. On the other hand one have to remark that Prob(Z; = 0) — Prob(Z; =
1) = (1—2pum)(po—p1) in the case of classical binary mutation and Prob(Z; =
0)—Prob(Z; = 1) = (1-2pp Fpop1) (po—p1) in the case of DE mutation. Both
variants tend to decrease the difference between py and p; but the decrease
is smaller in the case of DE variant.

6 Conclusions

Almost for all DE variation operators the expected population variance after
mutation and crossover is related to the current population variance by a
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simple linear dependence based on a coefficient ¢(CR, F,q,m,n) which in-
volves all parameters characterizing the algorithm. This allows us to control
the evolution of the population diversity by just changing the algorithm’s
parameters. Significant differences have been identified between the behavior
of binomial, exponential and arithmetical crossover. A simple mutation rule
which does not involve differences but just the estimation of the current vari-
ance was proposed. It has the same behavior as DE/rand/1/* with respect
to the population variance evolution. Numerical experiments show that for
some sets of parameters the variance based mutation combined with bino-
mial crossover behaves better than DE/rand/1/bin but for other ones worse.
This suggests on one hand that the evolution of the population variance has
a significant influence on the behavior of the algorithm and on the other
hand that the difference based mutation induces a dynamics which cannot
be entirely mimicked by using the population variance estimation instead.
The analysis of the influence of the DE binary mutation on the population
distribution shows that it leads to a dynamics different than that induced
by classical binary mutation. However further analysis is needed to assess its

effectiveness for real problems.

-1
Appendix. Proof of Proposition 1. Since E(Var(X)) = m2—mE((X,~—X]-)2)
for any pair of distinct indices (i, j) it follows that it is enough to find the
relationship between E((Z; — Z;)?) and E((X; — X;)?) for an arbitrary pair
(4,7) of distinct values. Based on the fact that Z; = Y; 1, + X;1;, it follows:

E((Zi — Zj)*) = ppE((Yi = Y3)?) + 2pm(1 — pm) E((Y; — X;)?)
(19)
+(1 = pm)*E((X; — X;)?)
If 7 and J are two random indices from {1,...,m} then E((X; — X,)?) =
E((Var(X))if I and J can be identical and E((X;—X;)?) = 22 E((Var(X))
if I and J take distinct values. Using these relations one can compute E((Y; —
Y;)?) and E((Y; — X;)?) when Y; is given by egs. (8) and (9).
By taking into account that I; and I; can be identical but Ky and Jy,
K and Jj; are respectively distinct one obtains, in the case of eq.(8) that

B((% - Y;Y) = (@ +2ZE£, B(Var(X))
and
B(Y; - X;)?) = 125, (Var(a)) + N'B((X. -~ X1)%)

By replacing these into eq. (19) one obtains eq. (10). In the case of eq.(9) one
have that:
2m

B - 1)) = 22 (B =) +2B() + "L B() ) E(Var(x)
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and

B~ X)) = -2 (14 BO7) + BE) - "B ) E(Var(x)

By replacing these into eq. (19) one obtains eq. (11).
Acknowledgments. Thanks are due to Olivier Francois for valuable suggestions
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