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Abstract. This paper presents an evolutionary-based parameter esti-
mation procedure able to deal with the particularities of the constraints
arising in mathematical models of biological systems. A measure of the
constraint satisfaction degree and several feasibility-based ranking rules
are proposed and comparatively analyzed for the problem of estimating
the parameters involved in a model describing the dynamics of thymo-
cytes. The numerical results illustrate the effectiveness of the procedure
in inferring models which fit well the experimental data and also satisfy
the biological constraints.
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1 Introduction

Inferring models from experimental data is an important task in computational
biology and usually leads to difficult constrained optimization problems. As
the estimation of the model quality can involve simulation of complex systems
and the apriori knowledge on the parameters could be limited, local optimiza-
tion methods involving gradient computation are inapplicable. Therefore, meta-
heuristics proved to be viable methods for parameter estimation of such models
[7]. In this paper we focus on the problem of identifying computational models
able to simulate the dynamics of thymocyte populations taking place in the thy-
mus, as part of the complex process through which the organisms defend against
infections [2]. Aiming to model transient perturbations of the normal dynamics
of thymocytes we arrived to the problem of estimating several dozens of param-
eters such that some biologically motivated constraints are satisfied. As these
constraints are related to properties of some time-dependent functions they re-
quire specific handling techniques. The paper is organized as follows. Section 2
presents the mathematical model and the components of the constrained opti-
mization problem. Section 3 shortly reviews evolutionary constraint optimization
while the proposed parameter estimation procedure, including the specific con-
straint handling variants, is presented in Section 4. Results of a comparative
analysis and the numerical validation of the estimation procedure are presented
in Section 5. Finally, Section 6 concludes the paper.
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2 The mathematical model and the parameter estimation

problem

One of the simplest models describing the dynamics of thymocyte populations,
proposed in [2], consists of four coupled differential equations (Eqs. (1)). Each
equation describes the evolution of the number of cells in the corresponding
population, controlled by proliferation, death and transfer rates (denoted by
r, d and s, respectively). Besides these rates, the model contains other three
parameters: b (inflow of progenitor cells), K and Kn (carrying capacities).

Ṅ(t) = rnN(t)(1−N(t)/Kn)− dnN(t)− snN(t) + b(1−N(t)/Kn)

Ṗ (t) = rpP (t)(1− Z(t)/K)− dpP (t)− (s4 + s8)P (t) + snN(t)

Ṁ4(t) = r4M4(t)(1− Z(t)/K)− d4M4(t)− so4M4(t) + s4P (t)

Ṁ8(t) = r8M8(t)(1− Z(t)/K)− d8M8(t)− so8M8(t) + s8P (t)

Z(t) = N(t) + P (t) +M4(t) +M8(t) (1)

These equations proved to be appropriate in modelling the thymocyte dynamics
in a normal thymus [2]. However various pathological situations or the admi-
nistration of some substances can perturb the normal dynamics by inducing a
significant involution followed by a regeneration of the thymocyte populations.
Such a dynamics can be simulated by replacing the constant rate parameters
in Eqs.(1) with variable rates obtained by adding to the intial rates a time-
depending function which models the transient perturbation. A family of func-
tions appropriate to model a perturbation starting from a zero value at an initial
time moment and approaching again zero after a time interval is described in
Eq.(2), where C = {c1, c2, c3, c4, c5} denotes a set of positive parameters.

ξ(C; t) =
c1

tc3 + c2
−

c1c4/c2
tc5 + c4

(2)

By replacing each constant rate r with r+ξ(C; t), five new parameters are intro-
duced for each of the thirteen rates, leading to a set of k = 71 parameters in the
model. Estimating the parameters values means finding x∗ ∈ Rk which mini-
mizes the mean squared error described in Eq.(3) and satisfies constraints related
to the positivity of all perturbed rates and to the vanishing of the perturbation.

MSE(x) =
1

4n

∑

π∈{N,P,M4,M8}





1

maxj=1,n{π̄
2

j }

n
∑

j=1

(π(x; tj)− π̄j)
2



 (3)

In Eq.(3) n denotes the number of experimental values available for each thy-
mocyte population, π̄ denotes experimental values corresponding to each of the
four populations and π(x; t) denote numerically estimated solutions correspon-
ding to the given set of parameters and to the time moments of the experimental
measurements. These estimated solutions are obtained by numerically solving
Eqs.(1) for initial values compatible with the experimental data. The division



3

of the error terms corresponding to each population by the maximal measured
value ensures the balance between the errors corresponding to different thymo-
cyte populations and avoid the bias in the estimation process toward parameters
of the dominant population. For each perturbed rate the two constraints to be
satisfied are described in Eq. (4) where ta denotes the time moment when the
perturbation starts and tf the time moment when it should be small enough
(e.g. smaller than a given value ǫf > 0).

r + ξ(C; t) ≥ 0 for all t ∈ [ta, tf ]; |ξ(C; tf )| < ǫf (4)

3 Evolutionary constrained optimization

A constrained optimization problem usually requires to find x∗ ∈ Rk which
minimizes an objective function f : Rk → R and satisfies gj(x

∗) ≥ 0 for
each j ∈ {1, . . . , q}. Evolutionary constrained optimization relies on using a
constraint handling technique when applying the basic evolutionary operators
(variation and/or selection). Most approaches interferes with the selection pro-
cess by changing either the fitness value computation (penalty method) or the
comparison rule between two candidate solutions (feasibility rules, stochastic
ranking) [3]. Despite the differences between them, all these techniques uses the
so-called constraint violation amount which for a constraint gj(x) ≥ 0 is defined
by φj(x) = min(0, gj(x))

2. The overall violation of the constraints is defined as
the sum φ(x) = φ1(x) + . . . + φq(x). While in the penalty function technique
the objective function and the constraint violation function are combined, in the
feasibility based rules they are separately used. The classical Deb’s rule [1] spe-
cifies that a candidate solution x is better than x′ if one of following conditions
is satisfied: (i) x is feasible and x′ is not feasible; (ii) both x and x′ are feasible
and f(x) < f(x′); (iii) both x and x′ are infeasible and φ(x) < φ(x′).

Using the objective function as comparison criterion only in the case of feasi-
ble solutions can lead to premature convergence [3]. Two variants which enlarges
the set of cases when the objective function is used as optimization criterion are
ǫ-feasibility [6] and stochastic ranking [5]. The ǫ-feasibility rule is based on a
relaxation of the feasibility concept, i.e. x is considered better than x′ if one
of following conditions is satisfied: (i) φ(x) ≤ ǫ and φ(x′) ≤ ǫ (x and x′ are
almost feasible) and f(x) < f(x′); (ii) φ(x) = φ(x′) (same constraints violation)
and f(x) < f(x′); (iii) φ(x) < φ(x′). On the other hand, the stochastic ranking
enhances the role of the objective function by involving it in the decision rule
not only when the solutions are feasible but also when a random event occurs.
However all these feasibility based rules use, when deciding if a solution is better
than another, the objective function and the constraints violation function not
in an aggregated but in a separate way.

4 The proposed parameter estimation procedure

The parameters of the model described in Section 2 which should be estimated
can be grouped in several sets: (C0;C1; . . . ;Cq). C0 denotes the parameters in-
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volved in Eqs. (1) (i.e. C0 = (rn, rp, r4, r8, dn, dp, d4, d8, sn, s4, s8, so4, so8,
b, Kn, K)). The sets Cj correspond to the parameters involved in the functions
used to perturb the rates specified in C0 and should satisfy the constraints de-
scribed in Eq.(4). The first constraint is particularly difficult to check as, in the
general case, it requires the analysis of the values of r+ξ(C; t) over a continuous
time interval. As a consequence it is neither easy to decide if a solution is feasible
nor to compute the constraint violation amount. However for smooth continu-
ous functions ξ(C; t) one can estimate the degree of constraint satisfaction by
sampling the time interval and computing the proportion of cases when the con-
straint is satisfied. More specifically, by considering an uniform discretization
Th = {ta, ta + h, ta + 2h, . . . , tf} of [ta, tf ] we can compute an estimation of the
constraint satisfaction degree as given in Eq.(5).

Sj
p(Cj) =

card{t ∈ Th|rj + ξ(Cj ; t) > 0} − δ

card(Th)
(5)

The constant δ > 0 in Eq.(5) has a small value and is used only to discriminate
the cases when the constraint satisfaction can be mathematically proved. For
instance in the particular case of constraints given in Eq. (4) a sufficient condition
ensuring the positivity is r ≥ max{c1/(c2 + c2

2
), c1c4/(c2 + c2c4)}. Therefore this

condition is first checked and if it is satisfied then the positivity constraint is
considered satisfied and Sp is set to 1. Otherwise Sp is computed using Eq. (5).

For the second type of constraints the satisfaction degree can be computed
following a standard approach which leads to a value Sv as defined in Eq.(6).

Sj
v(Cj) =

{

1 if |ξ(Cj ; tf )| ≤ ǫf
1−min{1, |ξ(Cj ; tf )|} otherwise

(6)

The overall degree of constraints satisfaction, S ∈ [0, 1] is defined as S(C) =
∏q

j=1
Sj
p(Cj)S

j
v(Cj). The values of S can be interpreted as follows: (i) if S(C) = 1

then C is surely feasible; (ii) if S(C) ≥ 1−δ/card(Th) then C is probably feasible
(there is neither evidence that the first constraint is violated nor guarantees that
it is satisfied); (iii) if S(C) = 0 then at least one of the constraints is severely
violated (at least one perturbation is too large or for at least one perturbed rate
all sampled values are negative); (iv) in all other cases, the value of S offers
information about the degree of constraint satisfaction.

Examples of several cases of perturbed rates satisfying or violating the con-
straints and the corresponding S values are illustrated in Fig. 1. Having a value
in [0, 1], S can be used to penalize the value of the objective function or as
acceptance probability of infeasible configurations.

Constraints handling. There are several ways to use the satisfaction degree
S and the MSE value in order to decide which of two candidate solutions is
better. Starting from the existing feasibility and ranking rules [3] and using the
properties of S we identified several variants which we comparatively analyzed
with respect to their effectiveness in solving the addressed parameter estimation
problem.
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Fig. 1. Illustration of the relationship between the properties of the perturbed rates
and the values of the constraint satisfaction degree, S. Continuous line: perturbed rate,
dashed line: initial value of the rate.

Ranking rule A. Using the assumption that S(x) ≥ θ suggests that x is feasible,
while S(x) < θ means that it is infeasible (for a given threshold θ), the Deb’s
feasibility rule can rewritten as follows. A candidate solution x is better than x′

if one of the following conditions is satisfied: (i) S(x) ≥ θ and S(x′) < θ; (ii)
S(x) ≥ θ and S(x′) ≥ θ and MSE(x) < MSE(x′); (iii) S(x) < θ and S(x′) < θ
and S(x) ≥ S(x′).

Ranking rule B. One of the particularities of the previous rule is that the objec-
tive function and the constraint satisfaction degree are used in a decoupled way.
A variant which aggregates MSE and S states that x is better than x′ if one of
the following conditions is satisfied (checked in this specific order): (i) S(x) ≥ θ
and S(x′) < θ; (ii) S(x)S(x′) = 0 and MSE(x) ≤ MSE(x′); (iii) S(x) 6= 0 and
S(x′) 6= 0 and MSE(x)/S(x) ≤ MSE(x′)/S(x′).

Ranking rule C. The first two rules analyze first the cases when the constraints
are satisfied or close to be satisfied. By ruling out first the cases when the
constraints are severely violated one obtains a slightly different variant when
x is better than x′ if: (i) S(x) > 0 and S(x′) = 0; (ii) S(x) = 0 and S(x′) = 0
and MSE(x) ≤ MSE(x′); (iii) S(x) 6= 0 and S(x′) 6= 0 and MSE(x)/S(x) ≤
MSE(x′)/S(x′).

Ranking rule D. Instead of inferring the feasibility in a deterministic way from
the value of S one can do it in a probabilistic manner. In this case S(x) is
interpreted as a probability that x, if selected, can lead to a feasible configuration.
Thus, by denoting with U1 and U2 two independent random values uniformly
selected from [0, 1] one can say that x is better than x′ if one of the following
conditions is satisfied: (i) U1 ≤ S(x) and U2 > S(x′); (ii) U1 > S(x) and
U2 > S(x′) and MSE(x) ≤ MSE(x′); (iii) U1 ≤ S(x) and U2 ≤ S(x′) and
MSE(x)/S(x) ≤ MSE(x′)/S(x′).

Ranking rule E. Starting from the idea of stochastic ranking [5], which allows
in a probabilistic manner to use the objective function as comparison crite-



6

rion, even for infeasible solutions, we arrived at the following rule which states
that x is better than x′ by sequentially checking the following conditions: (i)
S(x) ≥ θ, S(x′) ≥ θ and MSE(x) < MSE(x′); (ii) U < Pf , S(x)S(x

′) 6= 0 and
MSE(x)/S(x) < MSE(x′)/S(x′); (iii) S(x) ≥ S(x′).

Search method. As stated in [3] one of the most competitive evolutionary
metaheuristic in solving constrained optimization problems seems to be Differ-
ential Evolution (DE). On the other hand the effectiveness of DE for parameter
estimation in biological systems was reported in several comparative studies [7].
This motivated us to use JADE, an adaptive DE variant introduced in [8]. The
JADE overall structure is described in Algorithm 1 and its main features are:
(i) the elements used in the recombination rule described in Eq. (7) are chosen
such that a new candidate is created in a neighborhood of a good element but
away from a worse one (xrbest is selected from the p% elites of the current popu-
lation and xr2 is one of the inferior elements which were discarded in a previous
selection step and was stored in an archive); (ii) the scale factor (F ) and the
crossover probability (CR) are generated for each element of the population us-
ing a probability distribution (Gaussian and Cauchy, respectively) whose mean
is recomputed at each generation using information from successful elements.

zli =

{

xl
i + Fk · (xl

rbest − xl
i) + Fi · (x

l
r1 − xl

r2) if rand() ≤ CRi

xl
i otherwise

, i = 1,m, j = 1, k

(7)
The constraint handling techniques interfere with two of the JADE components:
(i) the ranking process used to select the top p% elements; (ii) the selection of
the survivor between the parent and the trial element.

Algorithm 1 JADE overall structure

1: Initialization step (population, control parameters, archive)
2: while 〈the stopping condition is false〉 do
3: Rank the population and identify the top p% elements
4: for i = 1,m do

5: Construct zi using Eq.(7); Choose the best between zi and xi

6: end for

7: Update the control parameters and the archive
8: end while

5 Numerical results

The used experimental dataset consists of 232 estimates of the number of cells
in each of the four thymocyte populations collected from young and adult mice
thymus either before or after a treatment administration. Each of the five rank-
ing rules proposed in the previous section was combined with JADE leading
to a specific procedure to estimate all k = 71 parameters of the model which
satisfies q = 26 constraints. In each case, results from 30 independent runs were
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collected. The results reported in Table 1 have been obtained by using popula-
tions of m = 20 elements, 5000 generations, a percent p = 10% in defining the
set of top elements and 0.5 as initial mean of the distributions used to provide
values for F and CR. A preliminary numerical study using several population
sizes (e.g. 20, 50 and 100) suggested that m = 20 leads to the best quality/cost
trade-off. For the variant inspired by stochastic ranking, the value of Pf was set
to 0.45, as suggested in [5]. The numerical solutions of the system (1) required
for MSE estimation were obtained using the ODE solver from Mathematica 7.0.

Table 1 presents statistical values of MSE, the constrained satisfaction de-
gree S (with ǫf = δ = 0.001) and the feasibility probability (FP ) defined as the
ratio between the number of runs when the solution can be considered feasible
(i.e. S ≥ θ) and the total number of runs [4]. As feasibility threshold, any value
θ larger than 0.99 proved to lead to solutions satisfying the positivity constraint.
The value of the threshold corresponding to the cases when all sampled values
of the perturbed rates are positive is 1 − δ/card(Th) = 0.999927 (for h = 0.1
and δ = 0.001). The results in Table 1 show that the analyzed ranking rules are
characterized by different quality of fit vs. constraint satisfaction trade-offs. The
best trade-off is obtained by the variant inspired from stochastic ranking which
with respect to MSE is superior to other ranking rules. The p-values obtained
when a Mann-Whitney test was applied to compare rule E and the other rules
are reported in the last column of Table 1. With respect to the constraint sat-
isfaction the most effective ones are rules B and D. Best behavior was observed
for the ranking rules using an aggregation of MSE and S. The ability of the
proposed procedure to lead to a model which fits well to the data and satisfies
the constraints on rates is illustrated (for one of the four populations) in Fig. 2.

Table 1. Quality of fit (MSE), constraints satisfaction (S), feasibility probability (FP ,
θ1 = 0.999927 and θ2 = 0.99) and p-values (Mann-Whitney test for comparing rule E
and the other rules). Algorithm: JADE combined with the proposed ranking rules.

Ranking rule MSE S FP (θ1) FP (θ2) p-value

Rule A (θ = 1) 0.0338± 0.0012 1± 0 1 1 5 · 10−12

Rule A (θ = 0.99) 0.0270± 0.0010 0.9966± 0.0033 0.5 1 7 · 10−8

Rule B (θ = 0.99) 0.0268± 0.0014 0.9999± 5 · 10−6 1 1 3 · 10−6

Rule C 0.0261± 0.0009 0.9878± 0.0119 0.45 0.45 4 · 10−5

Rule D 0.0290± 0.0017 0.9999± 3 · 10−6 1 1 6 · 10−10

Rule E (Pf = 0.45) 0.0250± 0.0005 0.9935± 0.0011 0.03 1 -
Unconstrained 0.0208± 0.0022 0.0468± 0.0776 0 0 -

6 Conclusions

By combining an evolutionary algorithm with an appropriate constraint handling
technique we succeeded in inferring a model of the perturbed thymus dynamics
which is in accordance with the experimental data. The constraint satisfaction
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Fig. 2. Left: Experimental data and simulated dynamics of N (MSE = 0.023, S =
0.993, ta = 20, tf = 35 days). Right: Initial rates (dashed lines) and perturbed rates
(continuous lines) for N .

degree and the proposed ranking rules, characterized by aggregating the qual-
ity of fit measure and the constraint satisfaction degree, can be used for other
optimization problems involving constraints which can be only partially checked.
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