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ABSTRACT
The aim of this paper is twofold. Firstly, it presents an
extension of a multi-stage compartmental model in order to
make it more appropriate in modelling various perturbations
of thymocyte dynamics.Secondly, it proposes an evolution-
ary approach, based on the JADE algorithm, for simulta-
neously estimating the number of division stages, the rates
associated to cellular processes (e.g. proliferation, death, mi-
gration) and the parameters corresponding to the proposed
perturbation functions. Several quality of fit measures are
investigated and their relationship with the variability of
experimental data is exploited in order to select the opti-
mization criterion.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search; J.3 [Computer
Applications]: Life and Medical Sciences

General Terms
Algorithms

Keywords
Compartmental models; thymocyte dynamics; parameter es-
timation; differential evolution

1. INTRODUCTION
Simulations of computational models inferred from exper-

imental data can provide valuable information on various bi-
ological systems. In immunology, constructing models and
simulating the processes involved in the intrathymic cell de-
velopment are essential in understanding mechanisms of im-
mune reactions. The intrathymic development of thymo-
cytes (T cells) begins with an influx of bone marrow precur-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$15.00.

sor cells and continues with several complex processes in-
volving cell proliferation, differentiation and death [5]. Dur-
ing these processes the cells express some membrane mark-
ers (e.g. CD4 and CD8) which are specific to mature T
cells. Depending on the absence/presence of these mark-
ers there are four main populations of cells in the thymus:
DN (double-negative cells - they lack both markers), DP
(double-positive cells - they have both markers), single pos-
itive M4 cells (which express only CD4) and single positive
M8 cells (which express only CD8). The pathway of thymo-
cyte development starts with DN cells which differentiate
into DP cells, which further lead to single positive cells (ei-
ther of M4 or M8 type). In order to shed some light on
the thymocyte dynamics, two main classes of mathematical
models have been proposed. The first class relies on the
usage of ordinary differential equations (ODEs) to describe
quantitative changes in each T cell population, the most
representative models being the compartmental ones pro-
posed in [5, 11]. The second class contains discrete models
which take into account the spatial distribution of T cells in
the thymic micro-environment and use rules to control the
differentiation routes of cells. The main approaches belong-
ing to this class are the reactive animation method [4] and
the cellular automata model [8]. Choosing a model depends
both on the type of information we are looking for and on
the particularities of the available experimental data which
can be used to estimate the model parameters.

The overall aim of our research was to obtain informa-
tion on the impact on the thymocyte dynamics induced by
the administration of a glucocorticoid (e.g. dexamethasone).
The experimental data contain estimations of the number of
T cells in each of the four populations (DN, DP, M4, M8)
collected at several time moments starting with the dexam-
ethasone administration. The experiments were conducted
on mice and the numerical estimates of each population size
were obtained by flow cytometry.

This paper presents an adaptation of the compartmental
model introduced in [11] to the particularities of experimen-
tal data and proposes an evolutionary approach to explore
the parameter space of the model. Due to their ability to
deal with nonlinear multimodal objective functions, evolu-
tionary algorithms (EAs) have been successfully used in es-
timating parameters of various biological models [2, 3, 9,
10]. However, at our best knowledge, none of the previ-
ous works on computational models of thymocyte dynam-
ics used EAs for parameter estimation. As long as initial



parameter values are provided by prior studies, using local
search methods seems to be the best choice. On the other
hand, when such an information is lacking the global search
ability of EAs could be beneficial. Moreover, exploring ex-
tensively the parameter space could provide suggestions for
further experimental design or ideas for new hypotheses on
the involved mechanisms. These motivated us to investigate
the particularities of evolutionary parameter estimation in
compartmental thymus models.
The rest of the paper is organized as follows. Section

2 presents a compartmental model involving multiple divi-
sion stages adapted starting from the model proposed in
[11]. Section 3 contains a short review of related work on
evolutionary design of computational models for biological
systems and the description of the selected evolutionary al-
gorithm. Details on the components of the evolutionary ap-
proach (e.g. optimization criteria, search strategy) are given
on Section 4, while their influence on the simulation results
is presented in Section 5. The last section concludes the
paper.

2. COMPARTMENTAL MODELS FOR THY-
MOCYTE DYNAMICS

The development of T cells involving several populations
and migration between them can be easily modeled using
communicating compartments. The first mathematical model
of the selection and differentiation processes in the thymus
has been proposed by Mehr at al. [5]. In its simplest form
it consists of four compartments, one for each thymocyte
population. The dynamics of the population in each com-
partment is described by a differential equation involving
terms modeling proliferation, competition, death and trans-
fer/migration between compartments. A particularity of
this approach is the fact that it models cell proliferation
by a logistic-like growth term characterized by parameters
related to the carrying capacity. On the other hand, the
model proposed by Thomas-Vaslin et al. in [11] uses several
division stages to model the proliferation process.

2.1 The model proposed in [11]
In this multi-stage compartmental model, the dynamics

of each population is described by several differential equa-
tions, each division stage having associated an equation.
Thus, the number of equations is related to the number of
division stages, while this number is further correlated with
the values of the proliferation, death and migration rates.
Eqs. (1)-(4) correspond to the processes taking place into
the thymus (the original model presented in [11] includes
also equations corresponding to a spleen compartment).

Ṅ0(t) = σN − (rN + dN )N0(t) (1)

Ṅi(t) = 2γ(t)rNNi−1(t)− (rN + dN + µN (i))Ni(t),

i = 1, nN

Ṗ0(t) =

nN
∑

i=1

µN (i)Ni(t) + 2γ(t)rNNnN
(t)− (rP + dP )P0(t)

Ṗi(t) = 2γ(t)rPPi−1(t)− (rP + dP + µP (i))Pi(t), (2)

i = 1, nP − 1

ṖnP
(t) =

nP−1
∑

i=1

µP (i)Pi(t) + 2γ(t)rPPnP−1(t)− µLPPnP
(t)

Ṁ40(t) = α4µLPPnP
(t)− (r4 + d4)M40(t) (3)

Ṁ4i(t) = 2γ(t)r4M4,i−1(t)− (r4 + d4 + e4(i))M4i(t),

i = 1, n4 − 1

Ṁ4n4
(t) = 2γ(t)r4M4,n4−1(t)− (d4 + e4(n4))M4n4

(t)

Ṁ80(t) = α8µLPPnP
(t)− (r8 + d8)M80(t) (4)

Ṁ8i(t) = 2γ(t)r8M8,i−1(t)− (r8 + d8 + e(i))M8i(t),

i = 1, n8 − 1

Ṁ8n8
(t) = 2γ(t)r8M8,n8−1(t)− (d8 + e8(n8))M8n8

(t)

In these equations the proliferation rates are denoted by
rN , rP , r4 and r8 (for DN, DP, M4 and M8 populations, re-
spectively), while the rates corresponding to natural death
are denoted by dN , dP , d4 and d8. The process of migration
between populations and that of exporting cells outside the
thymus are controlled by some rates which depend on the
stage number i, i.e. µN (i) = (αN · i)

n, µP (i) = (αP · i)
n,

e4(i) = (αe4 · i)
n and e8(i) = (αe8 · i)

n. If the computed mi-
gration/export rate is higher than 1 then it is set to 1. When
solving this system of equations, it is supposed that at the
initial time moment all cells corresponding to a population
are in stage 0 (i.e. N0, P0, M40 and M80).

In [11] the function γ is used to model the influence on
the proliferation process of a treatment applied continuously
for a given time interval T (e.g. 7 days). More specifically,
γ(t) = 0 for t ≤ T (meaning that the proliferation is com-
pletely inhibited) and γ(t) = 1 for t > T . Such an approach
cannot be applied in the case of a single dose treatment. In
such a case it is not easy to set the value for T , as it is not
a priori known when the impact of the treatment vanishes.
Moreover the impact of the treatment can vary between pop-
ulations.

2.2 Extending the model applicability
In order to model the transient influence induced on the

thymocyte populations by the administration of the sub-
stance in an unique dose we propose to use a continuous
perturbation function, γ(t) (Eq. (5)), which can model both
the depletion and the rebound of each thymocyte popula-
tion. The process of population depletion, initiated imme-
diately after the substance administration, is modeled by an
exponential function depending on a decay rate denoted by
δ0. The recovery process (starting at a moment τ0) is mod-
eled by a logistic function depending on two parameters: δ1
(corresponding to the recovery rate) and τ1 (corresponding
to the time moment when the proliferation rate attains half
of its original value). In order to ensure the continuity of
γ(t) one of the four parameters δ0, τ0, δ1 and τ1 has to
be chosen based on the other three parameters such that
exp(−δ0τ0) = 1/(1 + exp(−δ1(τ0 − τ1))). In our simulations
we considered δ0, τ0 and δ1 as free parameters, while τ1 was
computed using the above mentioned constraint.

γ(t) =

{

exp(−δ0t) if t < τ0
1/(1 + exp(−δ1(t− τ1))) if t ≥ τ0

(5)



Since the treatment can have different impact on the T
cell populations, we consider different perturbing functions,
i.e. γN (t) (for DN), γP (t) (for DP), γ4(t) (for M4) and γ8(t)
(for M8). The modified model will thus have γN , γP , γ4
and γ8 instead of γ in Eqs. (1)-(4), respectively. Therefore
there will be 12 new free parameters to be estimated in order
to fit the model to the data. It should be also mentioned
that, motivated by the variability of the experimental data
corresponding to M4 and M8 populations, we considered
different proliferation/death/migration parameters for these
two populations (unlike the model fitted in [11] where same
parameters were used for both populations).

3. EVOLUTIONARY DESIGN OF BIOLO-
GICAL MODELS

Inferring models from data is usually formulated as an op-
timization problem aiming to identify the model structure
and the parameters which minimize the distance between
simulated and experimental data. As model simulation typ-
ically means numerically solving differential equations, the
objective function cannot be computed symbolically and it
usually is highly nonlinear and multimodal. This limits the
effectiveness of local search methods and explains the in-
creasing interest in using population-based stochastic opti-
mization methods.

3.1 Related work
In [9] is analyzed the ability of several evolutionary algo-

rithms to estimate the kinetic parameters of gene regulatory
networks, modeled through S-systems and H-systems. Six
EAs (binary and real encoded genetic algorithms - GA, stan-
dard evolution strategy - ES, covariance matrix adaptation
evolution strategy - CMA-ES, differential evolution - DE
and particle swarm optimization - PSO) were involved in
the comparative study. Best behavior is reported for CMA-
ES, closely followed by DE.
The same set of EAs, together with a Simulated Anneal-

ing (SA), a Hill Climbing (HC) and a Tribes algorithm (a
settings free variant of PSO) have been investigated in [3] in
the context of parameter estimation in several mathemati-
cal models of metabolic networks. In all experiments, the
DE algorithm has been ranked either the best or the sec-
ond best (after PSO). Based on these results the authors
conclude that PSO and DE represent a good choice when
optimizing parameters in biological models.
In [10] the parameters of an ODE model describing the dy-

namics of endocytosis are estimated using a local-derivative
based method (A717) and three meta-heuristic algorithms
(differential ant-stigmergy algorithm - DASA, PSO and DE).
All meta-heuristics significantly outperformed the local search
method, while DE proved to be the best of them with respect
to the quality of fit. Despite the large number of reported
results on applying EAs in designing models for biological
systems, there are no reported results on using EAs in de-
signing models for thymocyte dynamics.

3.2 Selected EA: JADE [12]
The effectiveness of DE for parameter estimation in bio-

logical systems, as reported in several comparative studies,
together with its simplicity and flexibility represent strong
points which recommend its usage. The sensitivity of the
standard DE [7] to its control parameters, has been signif-
icantly reduced by recent adaptive variants such as JADE

[12], which is currently one of the most effective DE vari-
ant [6]. The JADE overall structure, for minimization of
f : S ⊂ Rd → R, is described in Algorithm 1 and its main
features are: (i) the elements used in the recombination rule
described in Eq.(6) are chosen such that a new candidate
is created in a neighborhood of a good population element
but away from a worse one (xrbest is selected from the p%
elites of the current population and xr2 is one of the infe-
rior elements which were discarded in a previous selection
step); (ii) the scale factor (F ) and the crossover probabil-
ity (CR) are generated for each element of the population
using a probability distribution (Gaussian and Cauchy, re-
spectively) whose mean is recomputed at each generation
using information from successful elements (sets F and CR
in Algorithm 1).

Algorithm 1 JADE overall structure

1: Population initialization X(0)← {x1(0), . . . , xm(0)}
2: Compute {f(x1(0)), . . . , f(xm(0))}
3: Control parameters initialization (k = 1,m):
4: Fk(0)← N (aF (0), σ), CRk(0)← C(aCR(0), σ)
5: Archive initialization: A ← ∅; F ← ∅; CR ← ∅
6: g ← 0
7: while 〈the stopping condition is false〉 do
8: for k = 1,m do
9: Construct zk using Eq.(6); Compute f(zk)
10: if f(zk) < f(xk(g)) then
11: xk(g + 1)← zk; A ← A∪ xk(g)
12: F ← F ∪ Fk(g); CR ← CR ∪ CRk(g)
13: else
14: xk(g + 1)← xk(g)
15: end if
16: end for
17: g ← g + 1
18: Compute aF (g) and aCR(g) using F and CR
19: Control parameters adjustment (k = 1,m):
20: Fk(g)← N (aF (g), σ), CRk(g)← C(aCR(g), σ)
21: Archive pruning by random selection; F ← ∅; CR ← ∅
22: end while

zlk =







xl
k + Fk · (x

l
rbest − xl

k)+ Fk · (x
l
r1 − xl

r2)
if rand() ≤ CRk

xl
k otherwise

(6)

The only parameters to be specified are: the population
size (m), the fraction of the top-ranked elements used in
the recombination rule (p ∈ [0.05, 0.2]) and a parameter for
adjusting the mean of the distribution probabilities used to
generate values for Fk and CRk (a value of 0.5 can be used).

4. INFERRING THE MODEL FROM DATA
This section presents specific elements in selecting the op-

timization criterion and the parameter space search strategy.

4.1 Data variability and optimization criteria
The experimental dataset consists of estimates of the num-

ber of cells in each of the four thymocyte populations col-
lected at eleven time moments starting with the moment
when the substance was injected and ending at day fourteen
after this moment (t1 = 0, t2 = 0.25, t3 = 0.5, t4 = 1, t5 = 2,
t6 = 3, t7 = 4, t8 = 5, t9 = 8, t10 = 9 and t11 = 14).For each



Table 1: Variability of experimental data corre-
sponding to each thymocyte population.

Measure DN DP M4 M8 Avg.
data data data data

V ar0 0.164 1.346 0.339 0.017 0.390
V ar1 0.031 0.486 0.115 0.105 0.184
V ar2 0.007 0.008 0.015 0.006 0.009

time moment, two to four values are available, the number of
data instances corresponding to each thymocyte population
being 35. Same number of data instances were provided for
each thymocyte population, thus the total number of data
is 140. The dataset is characterized by several types of vari-
ability: (i) variability over time in the data corresponding
to each population, mainly induced by the influence of the
administrated substance on the thymocyte dynamics; (ii)
variability between the values collected for the same time
point, caused by the differences between the mice used in
the experiments; (iii) variability over the four thymocyte
populations.
The last two variability types can influence the results of

a data fitting procedure if a Mean Squared Error (MSE) is
used as optimization criterion. Therefore, we analyzed sev-
eral MSE variants and their corresponding variability mea-
sures. Let us denote by yij the value of sample j correspond-
ing to time ti (i = 1, k, j = 1, ni, n = n1+n2+ . . .+nk) and
by y(ti, x) the estimation, based on the parameter set x, of
the number of cells at time ti. The general form of MSE is
described in Eq. (7).

MSEw(x) =
1

n

k
∑

i=1

ni
∑

j=1

wij(yij − y(ti, x))
2 (7)

For wij = 1 one obtains the classical mean squared error
(MSE0). In several works [1, 3, 9] presenting computational
approaches in parameter estimation of biological models is
used the relative MSE characterized by wij = 1/y2

ij (denoted
here as MSE1). Taking into account the variability between
the data corresponding to the four thymocyte populations
we could also consider to weigh differently the MSE terms
corresponding to different populations. The variant we con-

sider uses w
(p)
ij = 1/(y

(p)
max)

2 where y
(p)
max denotes the largest

experimental data corresponding to population p. In this
case there are four weights, one corresponding to each pop-
ulation and the optimization criterion is denoted by MSE2.
The objective function used in parameter estimation is the

average of MSE values corresponding to the four popula-
tions. In order to decide which MSE variant is less sensitive
with respect to the variability over the populations we con-
ducted a preliminary analysis by replacing y(ti, x) in Eq. (7)
with the average of experimental data for each time moment
(yi). The variability measures corresponding to the three
MSE variants described above are denoted by V ar0, V ar1,
V ar2 and their values are presented in Table 1, suggesting
that MSE2 is the least sensitive.

4.2 Searching the parameter space
There are three types of parameters in the multi-stage

compartmental model described in Eqs. (1-4): (i) parame-
ters influencing the structure of the model (i.e. the number
of division stages for each population: nN , nP , n4, n8 which

control the number of differential equations); (ii) parameters
corresponding to the rates of proliferation, death and differ-
entiation mechanisms (when no interrelation constraints are
imposed on them there are 17 parameters); (iii) parameters
involved in the functions used to perturb the proliferation
mechanism of each population (12 free parameters if the
function is as described in Eq. (5)).

Usually, the structural parameters are estimated first and
the other parameters (e.g. rates) are estimated in a second
step using fixed values for the structural parameters. In an
evolutionary approach this could be done by using a nested
algorithm consisting of an outer EA aiming to evolve the
structure and an inner EA aiming to estimate the param-
eters corresponding to each structure. Such an approach,
based on two EAs with specific operators, has been proposed
in [2] for cell models design. The particularity of the model
investigated in this paper is that for any number of division
stages the number of non-structural parameters is the same.
This property is ensured by the fact that the only difference
between the equations describing the dynamics correspond-
ing to different division stages is related to the migration
rate value, µ(i) which in the model proposed in [11] is com-
puted as: µ(i) = (α · i)n, thus for all values of i there are the
same two migration parameters per population (n and α).
Moreover, same value of n is used for all populations lead-
ing to five different parameters related to division stages
(n, αN , αP ,αe4 and αe8). Therefore the number of stages
and all the other parameters can be estimated simultane-
ously, by interpreting the optimization problem as a mixed
integer-continuous one. Previous studies [7] proved that DE
can be effectively applied for mixed integer-continuous opti-
mization problems by conducting the search in a continuous
space and by converting the values of discrete parameters to
integers only for evaluation.

Before deciding on the search variant we conducted a
preliminary comparative analysis between a nested variant
(based on JADE both at the outer and the inner level) and a
simple simultaneous search. The same computational bud-
get (50000 MSE evaluations) has been divided as follows.
In the nested case the outer JADE used a population of
mo = 10 elements and go = 5 generations while the inner
JADE (called to compute the fitness of each set of number
of stages) evolved for gi = 100 generations a population of
mi = 10 elements (sets of non-structural parameters).

In the simultaneous evolution approach a population of
20 elements (encoding all parameters) was evolved for 2500
generations. The average quality of the parameters gener-
ated by the simultaneous evolution was significantly better
than that of parameters estimated by the nested variant
(MSE2 = 0.0187 ± 0.001 vs. MSE2 = 0.0265 ± 0.002). A
possible explanation is that, as Figures 1 and 2 illustrate, in
the simultaneous evolution good sets of numbers of stages
are evolved continuously for more than gi = 100 generations
(the number allowed in the nested case). Moreover, in the
nested variant at most mo · go = 50 distinct configurations
(out of s4 = 1296 possible configurations corresponding to
the case when the number of stages belongs to {2, 3, . . . , 7})
are explored. On the other hand, the experiments suggest
that the number of configurations explored in the simul-
taneous evolution is higher, as there are runs where more
than 50 configurations were selected as best ones at least
for one generation. Therefore the results presented in the
following section were obtained using the strategy based on
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Figure 1: Evolution of the number of stages in
the simultaneous estimation variant. Quality of fit:
MSE0 = 0.481, MSE2 = 0.015.
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Figure 2: Evolution of the number of stages in
the simultaneous estimation variant. Quality of fit:
MSE0 = 0.488, MSE2 = 0.019.

simultaneously searching for the number of stages and for
the non-structural parameters.

5. SIMULATION RESULTS AND DISCUSSION
All simulation results reported in this section have been

obtained by applying JADE on a population of 20 elements
for 2500 generations (i.e. the computational budget was
set to 50000 function evaluations). The only parameters of
JADE to be set by the user were aF = aCR = 0.5 (the initial
value of the mean used to generate the scale factor and the
crossover probability) and the percent of elements used by
the rand/current-to-pbest strategy (p = 10%).
Each objective function evaluation requires solving a sys-

tem of up to 30 differential equations. To numerically solve
such systems, the ODE solver from Mathematica 7.0 was
used. The statistical estimates were obtained by at least 10
independent runs of the parameter estimation procedure.

5.1 Influence of the quality of fit measure
Since the optimization criterion used in the evolutionary

parameter search is the main guiding element, we compared

the results obtained when using each of the three quality of
fit measures (MSE0, MSE1, MSE2) presented in subsec-
tion 4.1. In each case we computed the values of all three
criteria but only one of them was used as optimization cri-
terion. From the results in Table 2 it follows that:

• when using MSE0 or MSE2 as optimization criteria,
their values are quite close; also the Pearson correla-
tion coefficient between the MSE0 and MSE2 values
collected during 12 runs is over 0.85 in both cases;
on the other hand, the correlation coefficient between
MSE0 and MSE1 is 0.32 while that between MSE2

and MSE1 is 0.24;

• when using MSE1 as optimization criteria, the esti-
mated parameters lead to values of MSE0 and MSE2

significantly larger than the values obtained when they
were used to guide the search.

As a consequence of this preliminary analysis the following
simulation results are based on using MSE0 and MSE2 as
optimization criteria (but not simultaneously, the problem
remaining of single-objective type).

5.2 Influence of the migration rate rule
The estimation of the number of stages is related to the de-

pendence between the migration rate and the stage number.
In [11] the migration rate is computed using µ(i) = (α · i)n

and the number of stages, nstages, is established using the
assumption that it should maximize the probability Prob(i)
that a cell completes exactly i division stages. Supposing
that r denotes the proliferation rate and d the death rate
this probability is described in Eq. (8).

Prob(i) =

(

1−
r

r + d+ µ(i+ 1)

) i
∏

j=1

r

r + d+ µ(j)
(8)

Table 3 presents the quality of fit obtained in three vari-
ants: (i) the number of stages is established at each evolu-
tionary step based on the probabilistic approach described
above (this means that only the non-structural parameters
are evolved); (ii) the number of stages is evolved simulta-
neously with the other parameters; (iii) a similar approach
as the previous one but based on the assumption that the
migration rate depends linearly on the stage number (Eq.
9). In this last case instead of α and n, values for αmin

and αmax are to be evolved (two parameters for each T cells
population).

µ(i) = αmin + (i− 1)
αmax − αmin

nstages

(9)

The results in Table 3 were obtained by using MSE2 as
optimization criterion and based on them one can state:

• the two migration rate rules (the linear one and that
based on the power law) lead to parameters of similar
quality (the Mann-Whitney statistical test returned a
p-value larger than 0.8 for both quality measures);

• evolving the number of stages simultaneously with the
other parameters leads to a slightly better fitting than
by estimating them using the probability given in Eq.
(8) (the Mann-Whitney statistical test returned a p-
value smaller than 0.05 in all tested cases).



Table 2: Quality of fit measures and optimization criteria
Optimization MSE0 MSE1 MSE2

criterion avg±stdev (min) avg±stdev (min) avg±stdev (min)
MSE0(wij = 1) 0.511± 0.020 (0.487) 1.390± 0.413(1.202) 0.023± 0.001(0.020)

MSE1(wij = 1/y2
ij) 0.971± 0.272(0.829) 0.203± 0.008(0.187) 0.036± 0.005(0.039)

MSE2(w
(p)
ij = 1/(y

(p)
max)

2) 0.512± 0.038(0.477) 1.187± 0.317(1.250) 0.018± 0.001(0.017)

Table 3: Influence of the migration rate rules and the number of stages estimation on the quality of fit

Quality µ(i) = (α · i)n µ(i) = αmin + (i− 1) ∗
αmax − αmin

nstages

measure Prob. estim. of nstages Evol. estim. of nstages Evolutionary estimation of nstages

avg±stdev avg±stdev avg±stdev
MSE0 0.6162±0.0777 0.5514±0.0593 0.577±0.125
MSE2 0.0200±0.0017 0.0187±0.0014 0.0189±0.0022

5.3 Exploring the outputs of the evolutionary
search

Since the stochastic character of EAs requires repeated
runs, such a parameter estimation procedure provides a sig-
nificant set of candidate solutions which can be explored in
order to collect information about the particularities of the
model. The results presented in this section are based on
40 independent runs of the evolutionary procedure aiming
to simultaneously estimate both the number of stages and
all the other parameters (a total of 33 parameters). Half
of the runs were based on using MSE0 as optimization cri-
terion and the other half used MSE2. The overall quality
of fit is illustrated in the last two columns of Table 3. A
close inspection of the estimated thymocyte dynamics cor-
responding to these results revealed that small MSE values
do not necessarily ensure a biologically plausible behavior.
Therefore a filtering of the results involving constraints con-
cerning the long term behavior of the population would al-
low to select relevant outputs. As the thymocyte dynamics
is expected to stabilize after 2-3 weeks since the glucocorti-
coid administration, constraints on the values of the deriva-
tives of N(t), P (t), M4(t) or M8(t) seems natural. Using

MSE0 ≤ 0.55, MSE2 ≤ 0.02 and Ṁ8(20) < 0.1 as filtering
criteria one obtained 8 sets of parameters corresponding to
biologically plausible simulation models. Figure 3 illustrates
two examples corresponding to the smallest values of MSE0

and MSE2. In the same time they illustrate two potential
behaviours: (i) a first one when all populations reach a sta-
tionary state as soon as proliferation became fully active; (ii)
a second one characterized by an involution stage following
the rebound process.
The estimated values of the parameters and the statis-

tics collected by independent runs of the EA can be used
both to validate the model from a biological point of view
and to refine the model or the estimation procedure. Table
4 presents averages, standard deviations and value ranges
for all free parameters of the model. They were computed
starting from the 8 best fitted models selected from results of
40 independent runs of the evolutionary procedure. A first
analysis allows to check if the estimated values are in ac-
cordance with existing knowledge and to obtain preliminary
and rough information concerning the model sensitivity. For
instance, the estimated values of the death rates dN and dP
are in accordance with the fact that the DP cells death rate
is significant, while the rate corresponding to DN is almost

negligible. Also the small value of µLP combined with the
small values of α4 and α8 are in accordance with experimen-
tal observations concerning the dramatic loss of DP cells by
negative selection [5, 11].

On the other hand, there are parameters with a large
range of estimated values, suggesting that the model is less
sensitive to their values. Such a parameter is the exponent n
involved in the rule used to compute the migration rate. The
small sensitivity of the model to this parameter has been
also remarked in [11] (even if the model and the data are
different). The fact that the model is almost insensitive to
the migration rate rule is supported also by the comparative
results presented in Table 3. Looking at the estimated val-
ues of the parameters involved in the perturbation functions
γ(t) one can remark that τ40 and τ80 (time moments mark-
ing when the depletion of the proliferation process stops) are
significantly smaller than τN0 and τP0 suggesting that the
influence of the administrated substance on cells in popula-
tions M4 and M8 is shorter in time, while the most affected
cells are those of DP. The different impact of the treatment
on the four thymocyte populations is also illustrated in Fig-
ure 4 where are plotted the perturbation functions corre-
sponding to all 8 selected sets of estimated parameters. The
variability in the set of estimated values for the same param-
eter is mainly caused by the correlations between different
parameters which make their true values practically uniden-
tifiable.

This means that models with significantly different values
of the parameters can behave similarly, making difficult the
parameter identification in the absence of a priori biological
constraints. A first step in dealing with this problem is to
limit the search range of some parameters. In the context of
thymocyte dynamics modelling, the parameters which are
not involved in the perturbation terms and which are sup-
posed to control the normal thymocyte dynamics can be es-
timated using experimental data on normal thymus. There-
fore we analyzed the effectiveness of the following two-steps
approach:
Step 1. The parameters of the non-perturbed model (i.e.
γ(t) = 1 for any t) are estimated using experimental data
corresponding to the normal thymus behaviour and using
large search ranges (as those mentioned in Table 4); the
values estimated in 20 independent runs are used to define
new ranges for parameters.
Step 2. All parameters of the perturbed model are estimated



Table 4: Estimated parameters. Statistics based on 8 runs selected from 40 runs such that MSE0 ≤ 0.55,
MSE2 ≤ 0.02, Ṁ8(20) < 0.1. Search ranges: sn ∈ [0.0001, 0.05], rP ∈ [0, 5], n ∈ [5, 50], nN , nP , n4, n8 ∈ [1.51, 7.49],
τN0, τP0, τ40, τ80 ∈ [0, 7], for all δ values the search range is [0, 20] and [0, 1] for all other parameters.

Param. Avg±StDev Estimated Param. Avg±StDev Estimated Param Avg±StDev Estimated
range range range

rN 0.55±0.1 [0.38,0.79] dN 0.07±0.04 [10−6,0.13] αN 0.21±0.09 [0.07,0.32]
rP 0.79±0.19 [0.47,1.10] dP 0.92±0.05 [0.84,0.99] αP 0.63±0.22 [0.29,0.97]
r4 0.80±0.23 [0.27,0.99] d4 0.42±0.08 [0.28,0.51] α4 0.20±0.06 [0.11,0.27]
r8 0.87±0.14 [0.59,0.99] d8 0.36±0.15 [0.12,0.62] α8 0.16±0.05 [0.07,0.23]
sN 0.04±0.004 [0.03.0.05] n 76±36 [36,144] αe4 0.44±0.17 [0.12,0.73]
nN 4.87±0.59 [4,6] µLP 0.13±0.05 [0.07,0.25] αe8 0.25±0.07 [0.14,0.38]
nP 3.87±2.20 [2,7] n4 4.87±1.05 [3,6] n8 5.62±1.21 [3,7]
τN0 1.27±0.39 [0.68,1.82] δN0 2.75±1.91 [1.24,7.05] δN1 12.43±4.88 [6.42,19.99]
τP0 1.37±0.39 [0.85,1.98] δP0 14.28±3.20 [9.46,19.88] δP1 14.31±3.80 [8.34,19.08]
τ40 0.30±0.12 [0.16,0.51] δ40 17.10±2.24 [13.77,20] δ41 11.38±5.25 [4.68,19.32]
τ80 0.35±0.11 [0.19,0.56] δ80 14.17±4.45 [5.81,19.99] δ81 12.72±3.20 [6.38.16.59]

using, for the parameters of the non-perturbed model, the
restricted ranges obtained at the previous step.
This approach limited significantly the number of overfitting
cases (models with small MSE but not biologically plausible
long term behavior): in all 20 runs the fitted model is char-
acterized by a biologically plausible long term behavior of all
populations and the variability between runs is also smaller
(MSE2 = 0.0183± 0.0003 vs. MSE2 = 0.0187± 0.001).

6. CONCLUSIONS
The usage of parameterized continuous functions to per-

turb the proliferation term of the model introduced in [11]
allos its usage to model the perturbation induced by sin-
gle dose administration of a glucocorticoid. The evolution-
ary procedure for simultaneously estimating the structural
and non-structural parameters leads to models which fit well
the experimental data as long as in the optimization crite-
rion choice the data variability is taken into account. The
good quality of fit of the evolved model, especially when the
search range is controlled, makes it reliable for predictions.
However not the same can be said about the estimated pa-
rameters if their intercorrelation is not carefully taken into
account during the estimation procedure. Therefore one of
the problems to be addressed in a further research is to con-
duct a multiple correlation analysis and to investigate the
parameters identifiability.
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Figure 3: Estimated T cell populations dynamics (examples with smallest MSE values in 40 independent
runs). Points: experimental data (number of cells/107). Continuous line: MSE0 = 0.481, MSE2 = 0.015,
number of division stages: nN = 5, nP = 2, n4 = 5, n8 = 5. Dashed line: MSE0 = 0.488, MSE2 = 0.019, number
of division stages: nN = 5, nP = 6, n4 = 6, n8 = 7.
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Figure 4: Perturbation functions corresponding to selected models (MSE0 ≤ 0.55, MSE2 ≤ 0.02, Ṁ8(20) ≤ 0.1).


