
Revisiting the Analysis of Population Variance in
Differential Evolution Algorithms

Daniela Zaharie
Department of Computer Science

West University of Timisoara
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Abstract—The performance of Differential Evolution (DE)
algorithms is highly dependent on the trial population diversity
and on the way the control parameter space is sampled. There-
fore, identifying critical regions containing control parameters
(e.g. scale factor, crossover rate) which can induce undesired
behaviour (e.g. premature convergence) is useful. In this context,
the aim of the paper is twofold. On one hand, the paper revisits
some existing theoretical results on the expected variance of
the trial population aiming to provide a comparative image on
critical regions in the control parameter space for several DE
variants: DE/rand/1/*, DE/best/1/*, DE/rand-to-best/*, DE/either-
or. On the other hand, a new theoretical result on DE/rand/1/*
population variance evolution is obtained under the assumption
that the bound constraints are handled by random reinitialization
of infeasible components. The relationship between the probabil-
ity of violating the bound constraints and the value of the scale
factor, F , is theoretically derived for DE/rand/1/* and empirically
analyzed for other DE mutation operators.

I. INTRODUCTION

Differential Evolution (DE) is undoubtfully one of the most
popular stochastic population-based metaheuristic, the amount
of papers devoted to it being currently impressive (see some
recent surveys [5],[10],[6]). Through its search mechanism
particularities (e.g. finite set of search directions and specific
combination of deterministic and random components) DE
found its own niche in the evolutionary computation field.
Since its proposal by R. Storn and K. Price in [14], the family
of DE algorithms has been extended by the introduction of new
mutation and crossover operators, control parameter adaptation
rules, hybridization with other local or global search methods
etc.

Most of the DE related work focuses on analyzing the
behaviour on benchmark test functions or on various real-
world applications. From a pragmatical point of view the
empirical analysis of the DE performance is very useful but it
should be complemented with insights on the DE behaviour
extracted through a theoretical analysis. The DE theoretical
results are still scarce and can be grouped in several categories:
(i) analysis of the probability distribution of the mutant or trial
population [1], [16], [17] and of its evolution, under some
specific assumptions, towards a distribution concentrated on
the global optimum [8]; (ii) analysis of the DE dynamics
stability by using the Lyapunov function method [7]; (iii)
analysis of the expected variance of the trial population aiming

to obtain insights on the evolution of the population diversity
and to control the risk of premature convergence [15], [18],
[20], [21].

The aim of this paper is to revisit some of the existing
results on the expected variance of the DE trial population
under some practical assumptions, as it is the issue of handling
bounding box constraints. The interest in analyzing the trial
population variance is motivated by the fact that it is a measure
of population diversity and for DE algorithms, the population
diversity (which is related to the differences between the
population elements) has a direct impact on the population
dynamics. In fact, in the absence of a mutation based on a
perturbation which is independent of the current population,
the population diversity is the main driving force of the
evolution. Therefore, maintaining the DE population diversity
is of paramount importance. Moreover, the DE behavior is
influenced by the strategy of sampling the control parameter
space, which could contain regions which should not be
systematically sampled, as they might induce premature con-
vergence (the population variance is decreasing even without
selection pressure, i.e. for flat functions). Therefore, Sect. II
provides an overview, for most of the DE mutation variants, on
the shapes and sizes of control parameter regions which should
be avoided as they induce premature convergence even for flat
functions. On the other hand, the influence of the methods for
handling bounding-box constraints on DE behavior has been
investigated mainly experimentally [2], [9], [11]. The main
remarks following these experimental analyses are that the
method of handling the bound constraints has a significant
influence on the performance of Differential Evolution [2]
and Particle Swarm Optimization [9]. The interesting flat
landscape analysis conducted in [9] suggests that some bound
handling techniques introduce a significant bias in the search
of the feasible region favouring either the middle or the
boundaries. However, this bias should be interpreted modulo
the probability of violating the boundaries (for low violation
probabilities the bias could be less effective). In order to gather
a more in-depth knowledge on these aspects, particularly in
the case of DE, Sect. III addresses questions such as: (i)
how frequently do the DE/rand/1 trial vectors violate the
bounding box constraint? (ii) what is the impact of the random
reinitialization of trial elements violating the bounding box
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constraints on the population diversity?

II. SUMMARY OF EXISTING RESULTS ON EXPECTED

VARIANCE OF DE TRIAL POPULATION

Most of DE algorithms are structured following the ge-
neral template of population-based metaheuristics. Algorithm
1 illustrates the main steps of a generational DE. At each
generation, a trial population Z = {z1, . . . , zm} is constructed
based on a difference-based mutation and a crossover. In order
to ensure that each trial element is in the feasible region (e.g.
a bounding box as [a1, b1] × . . . × [an, bn]) it is repaired as
soon as it is detected that it violates the bound conditions.
The bounding box constraints are checked and handled inde-
pendently for each component of the trial solution, thus the
analysis can be conducted component-wise.

Algorithm 1 The general structure of a generational DE

1: Population initialization X(0)← {x1(0), . . . , xm(0)}
2: g ← 0
3: while the stopping condition is false do
4: for i = 1,m do
5: Yi ← generateMutant(X(g))
6: Zi ←crossover(xi(g),Yi)
7: if Zi violates the bound conditions then
8: Zi ← repair(Zi)
9: end if

10: end for
11: for i = 1,m do
12: if f(Zi) < f(xi(g)) then
13: xi(g + 1)← Zi

14: else
15: xi(g + 1)← xi(g)
16: end if
17: end for
18: g ← g + 1
19: end while

A. DE mutation and crossover

Most of the DE mutation operators belong to one of the
categories described below, where Ii, Ji and Ki denotes
random indices uniformly generated (under some non-equality
constraints) from the set {1, 2, . . . ,m}, ξ denotes random
values corresponding to the scale factor and λ ∈ [0, 1] is a
convex recombination parameter.
DE/rand-to-best/L. The mutation described in Eq. (1), which
constructs the mutant element Yi, incorporates several well-
known variants: DE/rand/1 (λ = 0, L = 1), DE/rand/2 (λ = 0,
L = 2), DE/best/1 (λ = 1, L = 1), DE/best/2 (λ = 1, L = 2).

Yi = λx∗ + (1− λ)xIi +
L∑

l=1

ξl · (xJil
− xKil

) (1)

DE/current-to-rand/1. It is characterized by the usage as
base element of a convex recombination between the current
element and a random one. This change in the base vector

is expected to reduce the risk of generating mutants which
violate the bound constraints.

Yi = λxi + (1− λ)xIi + ξ · (xJi − xKi)

DE/either-or. It is a variant, proposed in [12], which combines
the role of mutation and crossover in one operator (by using
the selection probability pF ) aiming to ensure rotational in-
variance. In Eq. 2 the coefficients F and K correspond to
scaling factors.

Zi =

{
xIi + F · (xJi − xKi) with prob. pF
xIi +K · (xJi + xKi − 2xIi) with prob. 1− pF

(2)
Except for DE/either-or and the variants based on arith-

metical recombination, the DE trial vectors, Z i, are construct-
ing by mixing the components of the current element (x i)
with those of the mutant (Yi). The amount of components
taken from the mutant is controlled by the crossover ratio
parameter (CR) which therefore determines the mutation
probability, pm. The relationship between pm, CR and the
problem size (n) depends on the type of crossover [19]:
pm = CR(1− 1/n)+1/n (in the case of binomial crossover)
and pm = (1−CRn)/(n(1−CR)) (in the case of exponential
crossover).

B. Estimation of the expected variance of the trial population

The idea of using the expected population variance as
predictor of the explorative power of an evolutionary algorithm
has been introduced by Beyer [3] who conducted a component-
wise analysis of the variance in the case of evolution strategies
applied to flat landscapes. By conducting a similar analysis
in the case of no-selection DE, the dependence between the
expected variance of the trial population, E[Var(Z)], and the
variance of the current population, Var(X), has been derived
for several mutation operators, as illustrated in Table I. As the
analysis is conducted at the component level, the difference
between binomial and exponential crossover is reflected only
by different value of pm for same value of CR.

In all cases the expected variance of trial population depends
linearly on the current population variance (E[Var(Z)] =
c · Var(X) + d). The slope of this linear dependence depends
on the control parameters (pm, F 2 =

∑L
l=1 E[ξ

2
l ], λ, K , pF

etc), on the population size (m) and, indirectly (through the
relationship between pm and CR) on the problem size, n. The
free term, d, is non-zero only for mutations which involves
the best element in the population, x∗, and depends on the
distance between x∗ and the population average X . When d
is zero or very small and c is less than 1 then the variance of
the trial population is smaller than the variance of the current
population, even in the absence of selection pressure. In such
a case the DE population will lose diversity quickly leading to
premature convergence. This means that regions in the control
parameter space which are characterized by a corresponding
coefficient c(pm, F,m, ...) less than one should be avoided as
they would favor premature convergence. Such regions could
be as well used to induce premature convergence, when a quick
population convergence is desired. In practice, one way to



DE mutation E[Var(Z)] (expected variance of the trial population)

DE/rand-to-best/L/*
(
1 + 2pm

∑L
l=1 E[ξ

2
l ]− pm(2−pm)

m
− pmλ(2 − λ)m−1

m

)
Var(X) + λ2pm(1− pm)m−1

m
(x∗ −X)2

DE/rand/1/*
(
1 + 2pmF 2 − pm(2−pm)

m

)
Var(X) [18]

DE/rand/2/*
(
1 + 4pmF 2 − pm(2−pm)

m

)
Var(X) [18]

DE/best/1/*
(
1 + 2pmF 2 − pm − pm(1−pm)

m

)
Var(X) + pm(1− pm)m−1

m
(x∗ −X)2 [21]

DE/current-to-rand/1/*
(
1 + 2pmE[ξ2]− pm(2− pm)(1 − λ)

(
2λ+ 1−λ

m

))
Var(X) [20]

DE/either-or
(
p2F (1 + 2F 2 − 1

m
) + 2pF (1− pF )(m−1

m
+ F 2 + 3K2 − 2K) + (1− pF )2

(
m−1
m

+ 2m−2
m

(3K2 − 2K)
))

Var(X) [20]

TABLE I
DEPENDENCE OF THE EXPECTED VARIANCE OF THE TRIAL POPULATION (Z ) ON THE VARIANCE OF THE CURRENT POPULATION (X ) FOR VARIOUS DE

MUTATIONS.

reach the desired balance between exploration and exploitation
is to sample the control parameter space around the border of
the premature convergence region.

C. Critical regions

Figures 1-5 present regions in the space of two control
parameters (e.g. F versus CR, F versus pF ) characterized
by c(m,F, ...) < 1. All plots contain overlapped regions
corresponding to population sizes of m = 10 (light red) and
m = 100 (light blue) and a problem size of n = 50. In all
cases the critical region for m = 10 is larger than for m = 100.
In the case of DE/current-to-rand/1, the largest critical area (in
the (CR,F ) space) corresponds to values of λ in [0.4, 0.6].
In these cases, for values of F smaller than 0.5 the algorithm
is prone to premature convergence, disregarding the value of
CR. The smallest critical region corresponds to λ = 0, i.e.
to DE/rand/1/bin. If binomial and exponential crossovers are
analyzed comparatively (Figs. 1 and 2), it follows that in the
case of binomial crossover the lower bound of effective F
decreases linearly with CR, while in the case of exponential
crossover a decrease in the lower bound can be noticed only
for values of CR very close to 1.

An interesting behaviour can be noticed in the case of
DE/either-or (Fig. 3) where for some values of K the critical
region is rather large, with values of CR (e.g. CR < 0.3) for
which premature convergence may be induced disregarding the
value of F . It should be also noticed that, when K depends
on F , a small region is obtained for K = (F + 1)/2 which
is the recommended value in [12] (and for which the trial
population variance is less dependent on pF , as illustrated in
[20]). On the other hand if K is chosen independent of F ,
then for K > 0.7 the premature convergence region becomes
small especially for large values of m.

Finally, in the case of mutations involving the best element
in the population, x∗, (Figs. 4 and 5), the critical regions
area depends on the distance between x∗ and the population
average, being the largest when they are very close. As the
ratio (x∗−X)2/Var(X) increases, the region becomes smaller,
particularly in the case of exponential crossover. Thus, a bias
of the population average with respect to the best element in

the population might act as a diversity promoter even for small
values of F (except for the cases when CR is close to 1).

III. INCLUDING BOUND CONSTRAINT HANDLING INTO

ANALYSIS

All results presented in the previous section have been
obtained under the simplifying assumption that no bound con-
straints are involved. However, in practice the design variables
are bounded, thus values exceeding the bounds should be
considered infeasible. The aim of this section is to derive the
expected variance of the DE/rand/1/* trial population under
the more realistic assumption that the bound constraints are
properly handled.

A. Methods for bound constraint handling

There are several approaches in handling the bound con-
straints and the most frequently used (also included in the
experimental analysis presented in [2]) are described in the
following.

• Random reinitialization. The trial components which vi-
olate the bound constraints are replaced with values
generated uniformly in the bounding box, i.e. if z j

i �∈
[aj , bj] then zji is replaced with a random value uniformly
generated in [aj , bj ].

• Projection on the closest bound. The infeasible values are
replaced with the closest bounds, i.e. if z j

i < aj then it
is replaced with aj and if zji > bj it is replaced with bj .

• Average between the current element and the bound.
An infeasible component is replaced with the average
between the closest bound and the corresponding com-
ponent of the current element, i.e. if z j

i < aj then it is
replaced with (xj

i + aj)/2 and if zji > bj it is replaced
with (xj

i + bj)/2.
• Repeated reflection. The repaired value is computed by

repeatedly reflecting the infeasible value with respect to
the closest bound, i.e. if z j

i < aj then it is replaced with
2aj − zji and if zji > bj it is replaced with 2bj − zji .

• Resampling. A new trial element is generated, using
the mutation operator on newly selected parents, until a
feasible element is obtained. As such an iterated sampling
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Fig. 1. Influence of λ on the critical region for DE/current-to-rand/1/bin (CR on Ox, F on Oy; overlapped regions for m = 10 - light red, m = 100 -
light blue)
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Fig. 2. Influence of λ on the critical region for DE/current-to-rand/1/exp (CR on Ox, F on Oy; overlapped regions for m = 10 - light red, m = 100 -
light blue)
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Fig. 3. Influence of K on the critical region for DE/either-or (pF on Ox, F on Oy; overlapped regions for m = 10 - light red, m = 100 - light blue)
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Fig. 4. Influence of the ratio (x∗ − X)2/Var(X) on the critical region for DE/best/1/bin (CR on Ox, F on Oy; overlapped regions for m = 10 - light
red, m = 100 - light blue)
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Fig. 5. Influence of the ratio (x∗ −X)2/Var(X) on the critical region (CR, F ) for DE/best/1/exp (CR on Ox, F on Oy; overlapped regions for m = 10
- light red, m = 100 - light blue)

from the DE pool might by computationally costly, partic-
ularly for high-dimensional problems, another approach is
a decoupled resampling (the repairing strategy is applied
independently for each component violating the bounds).

The influence of a bound constraint method on the DE be-
haviour depends on its ability to generate trial elements which
cannot be created by the DE operators. Two extreme cases
corresponds to resampling which always generate elements
from the DE pool (except for the case of component-wise
resampling) and random reinitialization which can sample
any element in the search space. The other methods have an
intermediate behavior. Two of them (projection and average)
preserve the change direction (increase or decrease of the com-
ponents’ values) but favors elements on or near the boundary.
However, the motivation of choosing one method is rarely
presented in DE papers, thus obtaining some insights on their
characteristics might be useful.

B. Estimation of the bound violation probability

As the mutation-induced perturbation on a population ele-
ment depends on the scale factor, F , it is to be expected that
the probability of generating an element which violates the
bound constraints increases as F increases. The question is
how depends the violation probability on F . In the following
we estimate the bound violation probability for DE/rand/1 mu-
tation by using results on the probability distribution function
(pdf) of DE/rand/1 mutants proved by Ali and Fatti in [1]. The
analysis is valid for the first stages of the evolution when the
elements of the population are almost uniformly distributed on
the search space.

Let us consider a population of m scalar values uniformly
distributed in an interval [a, b] on which the DE/rand/1 mu-
tation is applied, i.e. a mutant y is constructed as xI + F ·
(xJ−xK) (with I , J and K distinct random values uniformly



distributed in {1, . . . ,m}). As in [1] one can assume, without
losing generality, that a = 0 and b = 1. Moreover we will
consider that F ∈ (0, 1], thus any mutant will belong to
[−F, 1+F ] and the mutants violating the bounds will belong
to [−F, 0) ∪ (1, 1 + F ]. If fY denotes the pdf of Y then
the probability of violating the bounds is P (Y ∈ [−F, 0) ∪
(1, 1 + F ]) =

∫ 0

−F fY (y)dy +
∫ 1+F

1 fY (y)dy. Since the pdf
of Y , as derived in [1], satisfies fY (y) = (F + y)2/(2F 2)
for −F ≤ y ≤ 0 and fY (y) = (F − y + 1)2/(2F 2) for
1 ≤ y ≤ 1+ F it follows that the bound violation probability
pv = P (Y ∈ [−F, 0) ∪ (1, 1 + F ]) = F/6 + F/6 = F/3.

Thus in the first stage of evolution, when one can consider
that the population is (almost) uniformly distributed on the
search space, the probability for a mutant to violate the
bounds is close to F/3. In the case of flat functions this
property remains true also for further generations (see Figure
6). In the case of non-flat functions it is expected that the
violation probability decreases in time, as the population may
be concentrated in a smaller region (see Fig. 7 for the case
of the Sphere function, which also illustrates the influence of
position of the global optimum in the search space and of the
bound handling method).

A further question is related to the influence of the mutation
type on the bound violation probability. Even if the pdf
corresponding to other DE mutation can be computed, the
computation is more intricate than for DE/rand/1. Therefore
we conducted an empirical analysis and estimated the violation
probability as average of the ratio of components violating the
bounds in the context of constructing a mutant population of
m = 100 elements (each one with n = 100 components)
for 1000 iterations (thus the averages have been estimated
based on 107 instances). The components violating the bounds
in one iteration have been replaced with values obtained
by applying one of the repairing rules: random, resampling,
projection, average, reflection. As the results in Table II and
Figure 6 illustrate there are some differences in the violation
probability corresponding to different mutations. As expected,
the violation probability is smaller in the case of DE/current-
to-rand/1 (as the base element is a convex recombination
of two population elements, thus farther from the bounds
than at least one of these elements). On the other hand,
in the case of DE/rand/2 the empirically estimated violation
probability is close to F

√
2/3 which is in agreement with

the remark that in case of two differences the impact of the
scale factor is multiplied by

√
2 (see the results in Table I on

the expected trial population variance where the factor 2F 2

is replaced with 4F 2). For DE/either-or (with pF = 0.5 and
K = (F+1)/2) the violation probability is again close to F/3.
Finally the results reported in columns 2-5 of Table II suggest
that the violation probability, in the case of flat functions, is
not influenced by the method used to repair the infeasible
elements.

C. Evolution of the population variance

Let us analyze now the influence of the random reinitial-
ization of infeasible elements (values outside [a, b]) on the

expected variance of the trial population. By applying the
same approach as in [20] (see Appendix) one can obtain that
E[Var(Z)] depends linearly on Var(X):

E[Var(Z)] = c(pm, pv,m, F ) · Var(X) + d(pm, pv,m, a, b)
(3)

where the slope coefficient c(pm, pv,m, F ) depends on the
control parameters as follows:

c(pm, pv,m, F ) = (1− pm)2 + pmpv(1− pm)
m− 1

m
+

p2m(1−pv)2B
[
m− 1

m
+ 2F 2

]
+2pm(1−pm)B

[
m− 1

m
+ F 2

]
+

2p2mpv(1 − pv)B

[
(m− 1)2

2m2
+

m− 1

m
F 2

]
(4)

with B denoting a bounding function, i.e. B(u) = u if u ≤ 1
and B(u) = 1 if u > 1. The second coefficient depends on
the population average, X , and on the characteristics of the
probability distribution used to generate feasible elements (e.g.
uniform distribution):

d(pm, pv, a, b) = pmpv(1− pmpv)
m− 1

m

(
X − a+ b

2

)2

+

pmpv

(
1− 1− pmpv

m

)
(b − a)2/12 (5)

Figure 8 illustrates the difference between the theoretical
expected variance of the trial population in the case when
the bound constraints are not handled (red dashed line) and
in the case when random reinitialization is used (black solid
line). The red curves correspond to (1 + 2pmF 2 − pm(2 −
pm)/m)gVar(X(0)). The black curves correspond to values
of the variance computed by E[Var(Z(g))] = c(pm, pv,m, F )·
E[Var(Z(g − 1))] + d(pm, pv,m, a, b). Based on the results
from the previous subsection the bound violation probability
is set to pv = F/3. These results confirm the intuition that
random reinitialization of infeasible elements can slow down
the decrease of variance (in case of small value of the scale
factor F ) but also avoid the unlimited increase of the variance
(in case of larger values of F ). However, a closer inspec-
tion of the evolution of variance shows that the theoretical
expression provides an over-estimation. Fig. 9 illustrates the
comparison between the expected variance evolution and that
estimated experimentally based on 10 independent runs. This
time the expected variance has been computed using only the
one-step dependence, i.e. E[Var(Z(g))] = c(pm, pv,m, F ) ·
E[Var(X(g))]+d(pm, pv,m, a, b), meaning that it is computed
based on the variance of the current population not on that es-
timated at the previous step. The expected variance computed
using the theoretical result is closer to empirical variance but
slightly over-estimate it (especially for large values of F ).

IV. CONCLUSIONS AND FURTHER WORK

Knowledge of the regions in the control parameter space
containing parameter values which induce decrease of the
population variance even for flat landscapes might be useful in
the context of adaptive algorithms, as a systematic sampling of



F F/3 DE/rand/1 DE/either-or DE/current DE/rand/2 F
√
2/3

Random Resampling Projection Reflection -to-rand/1
0.2 0.067 0.069± 0.002 0.067 ± 0.002 0.065± 0.002 0.069 ± 0.003 0.050± 0.002 0.013± 0.001 0.095 ± 0.003 0.094
0.5 0.167 0.165± 0.004 0.169 ± 0.004 0.165± 0.004 0.169 ± 0.004 0.155± 0.004 0.082± 0.003 0.232 ± 0.004 0.236
0.8 0.267 0.272± 0.004 0.266 ± 0.004 0.270± 0.004 0.266 ± 0.004 0.269± 0.004 0.204± 0.004 0.366 ± 0.005 0.377
1 0.330 0.330± 0.005 0.331 ± 0.005 0.333± 0.005 0.333 ± 0.005 0.330± 0.005 0.291± 0.005 0.449 ± 0.005 0.471

TABLE II
ESTIMATION OF THE BOUND VIOLATION PROBABILITY, pv (FLAT LANDSCAPE ANALYSIS)

F�0.2

F�0.5

F�0.8

F�1

DE�rand�1

0 20 40 60 80 100
g0.0

0.1

0.2

0.3

0.4

pv

F�0.2

F�0.5

F�0.8

F�1

DE�either�or

0 20 40 60 80 100
g0.0

0.1

0.2

0.3

0.4

pv

F�0.2

F�0.5

F�0.8

F�1

DE�current�to�rand�1

0 20 40 60 80 100
g0.0

0.1

0.2

0.3

0.4

pv

F�0.2

F�0.5

F�0.8

F�1

DE�rand�2

0 20 40 60 80 100
g0.0

0.1

0.2

0.3

0.4

0.5

pv

Fig. 6. Probability of bound violation (flat landscape analysis).Infeasible elements are replaced with random elements in the search space
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Fig. 7. Evolution of bound violation probability for a sphere function with different locations of the optimum and different bound handling methods.

F�0.1

F�0.2

F�0.5

F�0.8, F�1

DE�rand�1�bin, m�10, CR�0.5

0 50 100 150 200
g0.0

0.2

0.4

0.6

0.8

1.0
E�Var�Z��

F�0.1

F�0.2

F�0.5

F�0.8, F�1

DE�rand�1�bin, m�30, CR�0.5

0 50 100 150 200
g0.0

0.2

0.4

0.6

0.8

1.0
E�Var�Z��

F�0.1
F�0.2

F�0.5

F�0.8, F�1

DE�rand�1�bin, m�50, CR�0.5

0 50 100 150 200
g0.0

0.2

0.4

0.6

0.8

1.0
E�Var�Z��

F�0.1
F�0.2

F�0.5

F�0.8, F�1

DE�rand�1�bin, m�100, CR�0.5

0 50 100 150 200
g0.0

0.2

0.4

0.6

0.8

1.0
E�Var�Z��

Fig. 8. Theoretical evolution of the expected variance of the trial population
for DE/rand/1/bin without constraint handling (red dashed line) and with
random initialization of infeasible elements (black solid line)

these regions would lead to premature convergence. This can
be particularly relevant for small population size as in μDE
[4], as the premature convergence regions usually increases as
the population size decreases. Both theoretical and empirical
analyses suggest that in the first evolution stages the probabil-
ity of violating the bounds by mutants created using DE/rand/1
is close to F/3. By including the bound constraint handling
in the analysis of the expected variance an upper bound of the
trial population variance has been obtained. Further work will
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Fig. 9. Theoretical (black solid line) vs. empirical evolution (red line) of the
expected variance of the trial population (flat landscape)

address the analysis of DE/current-to-pbest/* variants and of
other bound constraint handling methods.

APPENDIX: SKETCH OF THE PROOF OF EQS.(3)-(5)

When a random reinitialization repairing strategy is applied,
a trial element can be described as a random variable satisfying

Zi = xi · 1Mi
+ (Yi · 1V i

+Ri · 1Vi) · 1Mi

with 1A denoting the indicator function corresponding to a
probabilistic event, A. The events involved in the above equa-
tions are: Mi (during the crossover the component from the



mutant vector is selected), Vi (the mutant vector component
violates the bound constraints) and their corresponding com-
plement events, M i and V i. The probabilities corresponding
to these events are Prob(Mi) = pm, Prob(M i) = 1 − pm,
Prob(Vi) = pv, Prob(V i) = 1−pv where pm is the mutation
probability and pv is the bound violation probability. Since

E[Var(Z)] =
m− 1

2m
E[(Zi − Zj)

2], where Zi and Zj are
random but distinct elements from the trial population, it
follows that it is enough to compute:

E[(Zi − Zj)
2] = (1− pm)2E[(xi − xj)

2]+
p2m(1 − pv)

2
E[(Yi − Yj)

2] + p2mp2vE[(Ri −Rj)
2]+

2pm(1− pm)(1 − pv)E[(xi − Yj)
2]+

2pm(1− pm)pv)E[(xi −Rj)
2] + 2p2mpv(1− pv)E[(Yi −Rj)

2]
(6)

Lemma 1: Let X = (x1, x2, . . . , xm) be a population of
scalars and I and J two random variables taking values in the
set of indices {1, 2, . . . ,m}. The random variables xI and xJ

have the following properties:
(i) if I and J are uniformly distributed then E(xI) = E(xJ ) =
X (X = 1

m

∑m
i=1 xi) and E(x2

I) = E(x2
J ) = X2 (X2 =

1
m

∑m
i=1 x

2
i );

(ii) if I and J have distinct values then E[(xI − xJ )
2] =

2m
m−1E[Var(X)];
(iii) if I and J are independent then E[(xI − xJ )

2] =
2E[Var(X)].

By using this lemma and properties of random variables
uniformly distributed in [a, b] one obtains:

E[(xi − xj)
2] = 2m

m−1Var(X)

E[(Yi − Yj)
2] = 2

(
1 + 2m

m−1F
2
)

Var(X)

E[(Ri −Rj)
2] = 2(b− a)2/12

E[(xi − Yj)
2] = 2

(
1 + m

m−1F
2
)

Var(X)

E[(xi −Rj)
2] = Var(X)+

(X − (a+ b)/2)2 + (b− a)2/12
E[(Yi −Rj)

2] =
(
m−1
m + F 2

)
Var(X)+

(X − (a+ b)/2)2 + (b− a)2/12
(7)

By including these terms in Eq. 6 one obtains:

E[Var(Z)] = c(pm, pv,m, F ) · Var(X)+

pmpv(1− pmpv)
m−1
m

(
X − a+b

2

)2
+

pmpv
(
1− 1−pmpv

m

)
(b − a)2/12

(8)

where

c(pm, pv,m, F ) = 2pm(1 − pv)
(
1− pmpv

m

)
F 2+

(1− pm)2 + pm(2− pmpv)
m−1
m + p2mpv(1− pv)

(m−1)2

m2

(9)
However, as the mutant vectors Yi are conditioned to belong
to [a, b] (as otherwise they would be replaced with random
elements Ri) the contribution of E[(Yi−Yj)

2], E[(xi−Yj)
2],

E[(Yi − Rj)
2] is not fully given by Eqs. 7 but should be

bounded. We consider that the contribution of each of these
terms is such that it is not larger than the corresponding

fraction of Var(X). Consequently the slope c(pm, pv,m, F )
is adjusted as follows:

c(pm, pv,m, F ) = (1− pm)2 + pmpv(1− pm)m−1
m +

p2m(1− pv)
2B

(
m−1
m + 2F 2

)
+ 2pm(1− pm)B

(
m−1
m + F 2

)
+

2p2mpv(1− pv)B
(

(m−1)2

2m2 + m−1
m F 2

)
(10)

with B denoting a bounding function, i.e. B(u) = u if u ≤ 1
and B(u) = 1 if u > 1.
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