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300223 Timişoara, Romania

rdogaru@info.uvt.ro

Flavia Micota
West University of Timişoara
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ABSTRACT
Identifying an appropriate measure of similarity between
concepts is an important step in solving data mining tasks
and designing decision support systems, being also a chal-
lenging problem because of the plethora of measures in the
current use. When choosing a similarity measure the par-
ticularities of data to be processed and the availability of
additional information should be taken into account. This
paper addresses the problem of estimating the (dis)similarity
between lists containing entities defined by a taxonomy and
presents the results of a comparative analysis of several mea-
sures. The analysis is conducted in the context of processing
lists of ICD-10 diagnostic codes. The set of analyzed simi-
larities is obtained by combining several code-level and list-
level measures. A weighted version of the measure based on
edge counting is proposed and its ability to explain observed
structures in data is estimated using some cluster validity
indices. The comparative analysis involves also measures
based on the information content estimated using either the
taxonomy structure or a data corpus.

CCS Concepts
•Information systems → Clustering and classification;
•Applied computing → Health care information systems;
•Computing methodologies → Genetic algorithms;

Keywords
similarity measures, taxonomy, clustering validation indices,
medical data

1. INTRODUCTION
(Dis)similarity measures represent key elements in assess-

ing the similarity between concepts, in clustering tasks, in
classification based on nearest neighbors and in other case
based reasoning approaches. In the medical data analysis,
such measures can be used in identifying similar cases, con-
structing patient profiles, comorbidity analysis, risk factors
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prediction and processing clinical documents [1, 8, 15].
Selecting a similarity measure is not an easy task as both

the nature and the structure of the data to be processed
as well as the available additional information (e.g. corpus,
taxonomies, ontologies etc.) should be taken into account.
Moreover, assessing the appropriateness of the measure to a
given task and a dataset represents another challenge.

There exist various criteria used to evaluate the quality of
a given data analysis task (e.g. classification, clustering etc.)
supposing that a similarity measure has been already se-
lected. In this paper we address a different problem: that of
identifying a similarity measure which provide a high agree-
ment with some ground truth observations. More specifi-
cally, we consider that there are some pre-established clus-
ters in data (which we consider as ground truth) and we are
looking for a similarity measure based on which a high value
of a clustering quality criteria is obtained. Thus this is a re-
versed problem with respect to typical ones encountered in
the clustering field: instead of searching for a partition when
a similarity measure is given we are searching for a similar-
ity measure based on some existing partition. This search
is done in the context of processing patient data consist-
ing of lists of diagnostics and medical procedures specified
through ICD-10 codes. ICD (International Classification of
Diseases1) denotes a hierarchical structure over the set of
medical diagnostics and procedures based on which a cod-
ing system is defined, i.e. each diagnostic has an associated
code and related diagnostics have similar codes.

In this context are analyzed several similarity measures
between diagnostic codes, a weighted variant is proposed
and its properties are theoretically studied. By combining
the similarity measures between entities in a taxonomy with
dissimilarities between lists (bags) of entities a set of eight
measures were generated and their effectiveness in explain-
ing existing data partitions has been tested for data sets
collected at two Obstetrics and Gynaecology hospitals. The
ground truth partition is constructed by stratifying the med-
ical records of mothers based on various pathologies of their
child/children (disorders related to length of gestation and
fetal growth, congenital malformations etc.). The additional
information which is used in the construction of the similar-
ity measures is provided by the ICD-10 taxonomy.

The main contributions of this paper are:

(i) a weighted taxonomy-based similarity measure is pro-
posed and the influence of the weights values on the
effectiveness of the similarity in explaining observed

1http://www.who.int/classifications/icd/en/



structures in the data is analyzed;

(ii) several combinations between code-level and set-level
(dis)similarities are proposed and analyzed by using
cluster validity indices as indicators of the (dis)similarity
quality.

The rest of the paper is organized as follows. Section 2
presents several code-level similarities based on taxonomies
and set-level dissimilarities which can be used for lists of
codes. In section 3 is presented a weighted similarity mea-
sure which generalizes the measure based on counting edges
in the taxonomy. Section 4 discusses the problem of as-
sessing the ability of a similarity measure to explain the ob-
served structure in data, section 5 presents the experimental
results, and section 6 concludes the paper.

2. RELATED WORK
There are some recent works which address the problem of

extracting knowledge from medical records containing clin-
ical information specified through ICD codes.

In [3] lists of ICD codes were collected from medical records
of patients with autistic disorders, aggregated in several
groups and translated into occurrence vectors. A hierarchi-
cal clustering was applied on occurrence vectors and some
medical trajectories have been obtained. In [9] a TF-IDF
representation is constructed based on ICD-10 codes associ-
ated to each patient and a cosine similarity is used in order
to identify clusters in the set of patients. The main differ-
ence between these approaches and that presented in the
current paper is the fact that we analyzed directly the list
of codes without translating them in high-dimensional oc-
currence/frequency vectors.

A different approach is presented in [6] where the structure
of the ICD-10 tree is exploited in order to build a predic-
tion model by using stable feature selection algorithms (e.g.
Tree-Lasso). However the aim of [6] is to learn a regularized
classification model without explicitly defining a similarity
measure.

On the other hand, the idea of using weights in similarity
measures has been used before in various contexts, partic-
ularly when the weights are associated to features. For in-
stance, the authors of [1] use a weighted similarity measure
in the context of processing ICF (International Classification
of Functioning, Disability, and Health 2) codes. However the
setting of weights is only marginally discussed being men-
tioned only that larger weights should be assigned to terms
corresponding to more specific ICF categories. A similarity
between ICD codes is also used in [14] but it does not use
weights being based on edges counting.

The problem of tuning or learning from data the values
of weights associated to features is another recurrent topic
in data mining. In [17] is presented an approach to learn
the weights associated to terms appearing in documents in
order to construct vectorial representations of documents
(instead of TF-IDF representation). The proposed learning
framework is based on a regularized loss function computed
using reference similarity pairs. We use instead known par-
titions of data and the similarity performance is evaluated
by cluster quality indices.

2http://www.asha.org/slp/icf/

3. TAXONOMY BASED SIMILARITY MEA-
SURES

3.1 Similarity between entities in a taxonomy
Taxonomies are hierarchical classifications based on “is-

a” relationships between the entities associated to nodes
placed on the same branch in the hierarchy. There are
taxonomies corresponding to various domains and some of
these provide specific encodings corresponding to the enti-
ties/concepts placed on nodes which can be used to easily
locate any entity in the hierarchical structure. Examples of
such taxonomies are ICD for the medical field, MSC3 (Math-
ematics Subject Classification) for the mathematical field,
ACM4 (Computing Classification System) for the computer
science field etc. An excerpt from the ICD-10 classification
is presented in Figure 1.

The taxonomies can be used to estimate the similarity
between entities corresponding to their nodes. There are
two main classes of taxonomy based similarity measures: (i)
edge-counting measures which uses the relative position of
the entities in the taxonomy; (ii) information-content based
measures which exploit both the co-location of entities and
additional information on the amount of information carried
by the concepts incorporated in the taxonomy. Disregard-
ing the class to which they belong, all measures are based on
estimating the discrepancy between commonality and speci-
ficity of entities.

In most taxonomy based measures, a key element in the
estimation of the commonality between two entities is rep-
resented by the most specific ancestor shared by the two
entities. In the following, the most specific ancestor of two
concepts C1 and C2 is denoted by lca(C1, C2) (least common
ancestor) and the taxonomy based similarity measures used
in this study are reviewed. For an overview of similarities
based on ontologies see for instance [11].

One of the most popular edge-counting measure is that
proposed by Wu and Palmer [16] and defined in Eq. (1)
where depth denotes the number of edges from the hierarchy
root to the node.

sWP (C1, C2) =
2 · depth(lca(C1, C2))

depth(C1) + depth(C2)
(1)

The measures based on information content have a similar
structure but instead of using the depth in the taxonomy
they use an estimation of the information carried by the
concept:

sIC(C1, C2) =
2 · IC(lca(C1, C2))

IC(C1) + IC(C2)
(2)

Different measures are characterized by different ways of
estimating the information content, using either a data cor-
pus or the intrinsic structure of the taxonomy. Lin [7] es-
timates the information content by a probability computed
based on a data corpus, i.e. IC(C) = − log(P (C)), where
P (C) is estimated based on the frequency of C in the data
corpus. The Lin similarity (sLin) is defined by:

sLin(C1, C2) =
2 · logP (lca(C1, C2))

log(P (C1)) + log(P (C2))
(3)

3http://www.ams.org/mathscinet/msc/
4http://www.acm.org/about/class/
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Figure 1: Fragment of the ICD-10 taxonomy

A variant which uses only the taxonomy structure has
been proposed in [12] where the information content of a
concept is expressed as the ratio between a measure of its
generality (related to the number of ancestors) and a mea-
sure of its concreteness (related to the number of descen-
dants). The specific estimation of the information content
proposed in [12] is described in Eq. (4) where |leaves(C)| de-
notes the number of leaves of the sub-tree having the node
corresponding to C as root, and |ancestors(C)| denotes the
number of ancestors of C including itself. The similarity
using this intrinsic estimation of the information content is
denoted in the following by sSBI (Sanchez-Batet-Isern sim-
ilarity).

IC(C) = − log

(
|leaves(C)|/|ancestors(C)|+ 1

|tree leaves|+ 1

)
(4)

All the above measures take values in [0, 1] (the similar-
ity of identical concepts is always 1, while the similarity of
concepts having the root as least common ancestor is always
0). Examples of similarity values for examples of elements
of the ICD-10 taxonomy are presented in Table 1. Thus it is
easy to construct dissimilarity measures by just subtracting
the similarity value from 1. In the rest of this paper the
dissimilarity measures constructed based on these similari-
ties are denoted by: δWP = 1 − sWP , δLin = 1 − sLin and
δSBI = 1− sSBI .

3.2 Dissimilarity between sets of entities
Usually, the elements to be processed are not individual el-

ements of a taxonomy but sets of such entities. For instance
the medical record of a patient contains a list of diagnostic
and procedure codes, a computer science paper may contain
several subject categories etc. Thus estimating the dissimi-
larity between two patient profiles requires the extension of
the similarities, as those presented in the previous subsec-
tion, to sets of taxonomic entities. If the used dissimilarity
between diagnostic codes is a binary one (e.g. it provides
0 only if the codes are equal and 1 in all the other cases),
then any set based dissimilarity (e.g. simple overlap, Dice,
Jaccard, Tanimoto etc.) could be used. However, in order
to preserve the discriminative information provided by the
values of the dissimilarity between individual entities they
should be involved in the computation of the dissimilarity
between lists of entities. A natural idea is to use distances
defined for sets of elements from metric spaces, as is the
classical Hausdorff distance. For a taxonomy-based dissimi-

larity δ and two finite sets of entities, A and B, the Hausdorff
dissimilarity is defined as in Eq. (5).

dH(A,B) = max{max
a∈A

min
b∈B

δ(a, b),max
b∈B

min
a∈A

δ(b, a)} (5)

It is known that if δ is a distance then dH is also a distance.
On the other hand, it is easy to see that the set of possible
values of dH coincides with the set of values taken by δ. As
it is considered that the discriminant capacity of distance
functions is related to the number of distinct values which it
can take [4], we propose a variant based on the concept of the
Dice dissimilarity between sets but involving not necessarily
binary dissimilarity between entities (Eq. (6)).

dD(A,B) =

∑
a∈A minb∈B δ(a, b) +

∑
b∈B mina∈A δ(b, a)

|A|+ |B|
(6)

In the experimental analysis both these measures are com-
bined with all variants of code-level dissimilarities.

4. A WEIGHTED TAXONOMY BASED SI-
MILARITY

Starting from the fact that different levels in a taxonomy
correspond to different types of correlations between the en-
tities associated to those levels we propose to assign weights
to levels. In this way each component of a taxonomic code
could contribute in a different way to the code-level simi-
larity. In this section we introduce a weighted code-level
similarity and analyze its properties.

4.1 Definition, examples and properties
Let us consider two entities, C1 and C2, from a hierar-

chical taxonomy on which the levels are numbered starting
with 0 for the root node and ending with the level k of
leaves. The j-th level value of C (denoted by levelj(C))
corresponds to the (unique) node on level j of the ascending
branch starting from C. If j is higher than the level of C then
levelj(C) is considered undefined. By assigning to each level
a weight we can obtain a similarity measure, sα, which gen-
eralizes the Wu-Palmer similarity. This measure is described
in Eq.(7) where αi ∈ [0, 1] such that α1 + α2 + . . . αk = 1
and σj(C1, C2) is defined in Eq.(8). As sα takes values in
[0, 1] the corresponding dissimilarity is δα = 1− sα.



C1 C2 lca(C1, C2) sWP (C1, C2) sLin(C1, C2) sSBI(C1, C2) sα(C1, C2)
A00.0 A00.0 A00.0 1 1 1 α1 + α2 + α3 + α4 = 1 same code
A00.0 A00.9 A00 0.75 0.84 0.94 α1 + α2 + α3 same section
A00.0 A09.0 A00-A09 0.5 0.76 0.67 α1 + α2 same group
A00.0 B99 ch.I 0.25 0.64 0.35 α1 same chapter
A00.0 Z00.8 ICD-10 0 0 0 0 different chapters

Table 1: Similarity values for two entities from the ICD-10 taxonomy (Figure 1). The probabilities involved
in the computation of sLin are: P (A00.0) = 0.00005, P (A00.9) = 0.00009, P (A090) = 0.00014, P (B99) = 0.00008,
P (A00− A09) = 0.00080, P (A00) = 0.00030, P (ch.I) = 0.00200. The number of leaves counted on the ICD-10 tree
which are used in the computation of sSBI are: |leaves(A00)| = 3, |leaves(A00 − A09)| = 59, |leaves(ch.I)| = 777,
|tree leaves| = 9573.

sα(C1, C2) =

k∑
i=1

αi

i∏
j=1

σj(C1, C2) (7)

σj(C1, C2) =

 1 if levelj(C1) = levelj(C2)
0 if levelj(C1) 6= levelj(C2)

or at least one level is undefined
(8)

In the case of ICD-10 codes, the first level is represented by
the chapters, the second level is represented by the groups,
the third level corresponds to sections and the fourth to
codes (under the assumption that only four levels are taken
into account). Examples of similarity values computed using
sα are presented in Table 1. By choosing appropriately the
values of parameters αi one can control the influence of each
level.

Proposition 1. The similarity measure, sα, and the cor-
responding dissimilarity measure, δα, satisfy the following
properties:

(i) for αi = 1/k, sα is identical to the Wu-Palmer similar-
ity for leaf entities corresponding to the same level;

(ii) dα satisfies the strong triangle inequality, i.e. dα(C1, C2)
≤ max{dα(C1, C3), dα(C2, C3)} for any triple (C1,C2,C3);

(iii) if αi∗ = 1 then sα is a binary measure which takes
into account only the levels up to i∗; if i∗ = k then the
simple binary similarity is obtained (which is 1 only
when the full entities are identical and is 0 in all the
other cases).

Proof. (i) If C1 and C2 are two entities placed on level
k of the taxonomy and they are identical up to level i then
sα =

∑i
j=1 αj . If αj = 1/k for j = 1, k then sα(C1, C2) =

i/k. On the other hand, if C1 and C2 are identical up to level
i then depth(lca(C1, C2)) = i, hence sWP (C1, C2) = i/k.
Thus the Wu-Palmer similarity is a particular case of the
weighted similarity characterized by equal weights.
(ii) Let us suppose that there exists at least a triple (C1, C2, C3)
such that δα(C1, C2) > δα(C1, C3) and δα(C1, C2) > δα(C2, C3).
This would mean that

k∑
i=1

αi

i∏
j=1

σj(C1, C2) <

k∑
i=1

αi

i∏
j=1

σj(C1, C3)

and

k∑
i=1

αi

i∏
j=1

σj(C1, C2) <

k∑
i=1

αi

i∏
j=1

σj(C2, C3).

In order to have these inequalities satisfied it would be ne-
cessary to exist i′ ≤ k and i′′ ≤ k such that

(a) σi′(C1, C2) = 0 and σi′′(C1, C2) = 0;

(b) σj(C1, C3) = 1 for any j ≤ i′ and σj(C2, C3) = 1 for
any j ≤ i′′.

If i′ = i′′, condition (a) implies that leveli′(C1) 6= leveli′(C2)
and condition (b) implies that leveli′(C1) = leveli′(C3) and
leveli′(C2) = leveli′(C3) which leads to a contradiction. If
i′ 6= i′′, let us suppose that i′ < i′′. Thus leveli′(C1) 6=
leveli′(C2) and leveli′(C1) = leveli′(C3) and leveli′(C2) =
leveli′(C3) which leads again to a contradiction. A similar
result is obtained if i′ > i′′. Thus, for any triple (C1, C2, C3)
the strong triangle inequality is satisfied.
(iii) If αi∗ = 1 then it means that all other weights are zero.
Thus sα(C1, C2) = 1 if levelj(C1) = levelj(C2) for each
j ≤ i∗ and sα(C1, C2) = 0 in all the other cases.

4.2 Role of weights
The weighted similarity allows to generalize the edge- count-

ing measures by allowing different edges to participate differ-
ently in the computation of the similarity. In this way differ-
ent importance can be assigned to different levels in a hier-
archical taxonomy. The extreme cases when only one weight
(αi∗) is non-zero correspond to “compressed” taxonomies in
which all levels higher than i∗ are “absorbed” in the i∗-th
level. One of the main questions is which are the appropriate
weights to use for a given data analysis task. This problem is
similar to that of feature selection/weighting for which a lot
of studies had been already conducted. Following the line of
reasoning from the feature selection/weighting problem the
weights search problem can be formulated as an optimiza-
tion of some quality criteria which can be estimated using
some information on the ground truth structure in the data.
It should be mentioned that sometimes we are interested
in avoiding binary values for the weights (since this would
generate binary similarity values). In such cases the natural
approach is to combine the quality criteria with a regular-
ization term aiming to penalize weight values approaching 1
or 0. In the experimental analysis presented in Section 5 we
analyzed both the case when the weights can take any value
in [0, 1] and the case when extreme values are penalized.

The main advantage of the weighted similarity is that,
once the weights are established, the similarity is easy to
evaluate and depends only on the level-structure of the tax-
onomy, being robust with respect to changes in the taxon-
omy which do not alter the level structure (unlike the mea-
sures based on the number of leaves which could be sensitive
to small changes in the taxonomy). On the other hand, this



simplicity of the weighted similarity may limit its discrimi-
nant capacity since it does not take into account estimations
of generality or concreteness of involved concepts. The effec-
tiveness of the proposed measure in estimating the similari-
ties between lists of diagnostic codes is analyzed for medical
data sets in section 5.

5. ASSESSING THE GOODNESS OF A SI-
MILARITY MEASURE

The quality of a similarity measure can be evaluated either
by direct or by indirect methods [13]. The direct methods
are based on analyzing the correlation between the similar-
ity estimated using the analyzed measure and some previ-
ously known similarity values. This approach is typically
used in the evaluation of semantic similarity between con-
cepts using similarity scores provided by human experts (see
for instance [8]). The indirect methods evaluate the quality
of a similarity by assessing the results of a classification or
clustering task which involves the analyzed similarity mea-
sure. In this last case the assessment is based on quality
measures specific to the task used as support of the analysis
(e.g. classification accuracy indicators or goodness of clus-
tering indicators). The results provided by indirect methods
are influenced by the performance of the algorithm used to
solve the classification or clustering task, thus they may not
reflect accurately the quality of the similarity measure, in-
dependently of a specific task solving method.

In this paper we use the first approach but since we do not
know similarity scores for specific pairs of elements (e.g. lists
of diagnostic codes corresponding to pairs of patients) we
shall consider as ground truth partitions of data which incor-
porate intrinsically the knowledge on the similarity provided
by the experts. Thus instead of analyzing the correlation
between the estimated similarity scores and those provided
by the human experts we will assess how well can explain
the analyzed similarity measure the existing data partition.
Therefore we shall evaluate the similarity by using internal
cluster validity indices, which analyze the compactness of
clusters and their separation.

The clustering validity indicators are typically used to as-
sess the performance of a clustering method or to identify
the proper number of clusters in a context when the simi-
larity measure is known. Here we use them in a different
context: we evaluate a similarity measure by analyzing how
good would be the observed data partition if it would be ob-
tained using the analyzed similarity. Thus, good clustering
quality would suggest appropriate similarity measure. The
problem which arises now is to choose a clustering quality
indicator. The choice we made is based on the results of the
evaluation methodology proposed in [5] which suggests that
C-Index obtained the highest score when compared with 6
other indices in an experimental study involving 11 datasets.

For a data partition P = {P1, P2, ..., PK} containing K
clusters, C-Index is computed by following the steps:
(i) Compute the sum V of dissimilarities between all ele-

ments belonging to the same cluster, i.e. V =
∑K
k=1 Vk,

Vk =
∑
x,y∈Pk

d(x, y).

(ii) Compute the dissimilarities between all distinct elements
in the data set and sort increasingly the list of dissimilarities
(L).
(iii) Compute Vmin as the sum of the first r elements in
the list L and Vmax as the sum of the last r elements of L

(r represents the number of distances corresponding to the
pairs belonging to same clusters and which were involved in
the computation of V ).
(iv) The value of C-Index is (V − Vmin)/(Vmax − Vmin).

C-Index takes values in [0, 1] and as its value is smaller,
the clustering quality is higher.

6. EXPERIMENTAL ANALYSIS
The practical context of this study is related to the prob-

lem of identifying risk factors for preterm birth using in-
formation from medical records of mothers and their cor-
responding newborn. Therefore the analysis is conducted
based on two datasets collected from obstetrics and neona-
tology wards of two Romanian hospitals.

6.1 Data sets
The source data collected through the Diagnosis Related

Groups (DRG) system were first pre-processed by following
the framework described in [2] in order to aggregate infor-
mation of mothers and corresponding newborns. This ag-
gregation resulted in 3176 records in the first dataset and
1655 records in the second dataset containing lists of diag-
nostic and medical procedures codes for (mother, newborn)
pairs. In a next step, each data set has been partitioned
in groups based on the main diagnostic or medical proce-
dure applied to the newborn. Consequently, in each data
set has been identified a group containing information on
mothers whose newborn does not have any pathology (nor-
mal group) and several groups corresponding to newborns
with various abnormal health conditions (e.g. “disorders re-
lated to length of gestation and fetal growth”, “haematolog-
ical disorders”, “congenital malformations” etc.). Fourteen
such groups have been identified in the first dataset and
sixteen in the second one. The synthetical description of
the partitions used as ground truth in evaluating the sim-
ilarity measures, obtained after eliminating the ambiguous
cases (same list of diagnostic codes in the mother record and
different pathological conditions in the newborn record) is
provided in Table 2.

6.2 Research questions and methodology
The experimental study has been designed in order to ad-

dress the following questions:

Q1. Is the proposed weighted similarity measure compe-
titive with respect to edge-counting and information-
content based measures? Do the values of weights have
a significant influence on the results?

Q2. Is the discriminant ability of a dissimilarity signif-
icantly influenced by the set-level dissimilarity (e.g.
standard Hausdorff or Dice variant)?

In order to get an answer to the first question we formu-
lated the problem of weights estimation as an optimization
one. The search space is represented by [0, 1]k and the objec-
tive function is the value of a cluster validity index computed
using δα as code-level dissimilarity and the observed parti-
tion as ground truth. To solve this optimization problem
we used a recent variant of SHADE (Success History Adap-
tive Differential Evolution) [10], one of the most competitive
evolutionary algorithms. The analysis has been conducted
using both datasets presented in the previous subsection.
Both the full data partition (including the normal group and



Data set 1 Data set 2
Characteristic all data normal preterm low weight all data normal preterm low weight

group group group group group group group group
Number of items 1343 374 85 56 859 401 46 33
Number of distinct codes 229 64 65 52 160 56 49 36
List length 4.9±1.4 4.4±1.3 5.3±1.2 5.2±1.3 4.3±1.3 4.1±1.2 4.7±1.4 4.3±1.1

Table 2: Synthetic characteristics of the datasets containing lists of ICD-10 diagnostics and medical procedures
codes. The number of items (an item is a list of codes corresponding to a patient), the number of distinct
ICD-10 codes and the average and standard deviation of the number of codes per list are reported for the
entire set of items (corresponding to health records of mothers who gave birth to children) and for three
groups of cases: normal cases, cases of pre-term births (section P07 in ICD-10 taxonomy) and cases of children
with low birth weight (section P05 in ICD-10 taxonomy).

the other groups corresponding to various newborn patholo-
gies) and two particular cases (involving the normal group
and groups of preterm birth and low weight cases) have been
used to assess the similarity quality.

As code-level (dis)similarity measures, besides the pro-
posed weighted measure, other three measures have been in-
volved in the study: (i) Wu-Palmer measure (δWP ), which is
a particular case of the weighted one; (ii) Lin measure (δLin),
which uses probabilities estimated based on the data corpus
represented by the joined datasets; (iii) Sanchez-Batet-Isern
measure (δSBI) which is based on estimating the informa-
tion content as described in Eq. (4) using the content of the
ICD-10 taxonomy.

In order to address the second question each of the four
code-level dissimilarities has been combined with two set-
level dissimilarities: the Hausdorff distance (Eq.5) and a
variant of this distance, which in discrete spaces is similar to
the Dice dissimilarity (Eq.6). Thus the comparative analysis
involved eight dissimilarity measures between lists of ICD-10
codes.

The evaluation framework was implemented in Java and
the Java version of SHADE (with default values of the pa-
rameters) provided by its authors5 has been used.

6.3 Results and discussion
A first set of results corresponding to three types of ob-

served data partitions are presented in Table 3 where values
of the C-Index are provided. For each data partition the
bolded values correspond to the dissimilarity with small-
est C-Index value (out of all combinations of set-level and
code-level measures) and the italic ones correspond to the
best code-level dissimilarity for each group of measure. In
the case of the weighted dissimilarity (δα) are provided re-
sults for all cases of binary weights (which lead to binary
(dis)similarity values), for the weight vector (α∗) estimated
using the evolutionary algorithm SHADE in the case when
no constraint is imposed on the weights values and for the
weight vector (αr) obtained in the case when a regulariza-
tion term was used in the criteria to be minimized (e.g.

(CIndex(δα)−
∏k
i=1(1− αi))/2). It should be noticed that

in the unconstrained case the estimated optimal weights are
in (0, 1) but in many cases they are very close to the border
of the search space (e.g. (1.65 ·10−6, 2.77 ·10−5, 0.9996, 3.59 ·
10−4)). However such values are reported as binary ones in
Table 3, e.g. α∗ ' (0, 0, 1, 0). On the other hand, in several
cases the evolutionary approach does not provide the best
value in the allocated computational budget (2000 genera-

5https://sites.google.com/site/tanaberyoji/home

tions). The main remarks which can be inferred from the
results presented in Table 3 are:

(i) In almost all cases the smallest C-Index value is ob-
tained by the weighted similarity with binary weights
(or close to binary). For most datasets the discrimi-
nant level (that for which the weight is highest) is the
third (section) or fourth (code) level. In the case when
the binary weights are penalized, the C-index value is
significantly higher.

(ii)In the case of two-groups partitions (normal vs. preterm
birth and normal vs. low weight) the combination be-
tween the Hausdorff distance (dH) and the optimized
weighted dissimilarity leads to C-Index values equal to
0 because the set of dissimilarity values is {0, 1} and
the group of normal cases contains several subgroups
of identical lists of diagnostic codes (groups of mothers
with identical lists of diagnostics and procedures).

(iii) When the Dice variant of the set-level measure is used
(dD) the binary weights are no more leading always to
the best results (especially for the two groups parti-
tions). However the weighted dissimilarity still leads
to the smallest C-index values.

(iv) In the case of full datasets, the dissimilarity based on
the taxonomy structure (δSBI) leads to better results
than the other two (δWP and δLin)

Based on these remarks one can say that the answers to ques-
tions Q1 and Q2 are both affirmative, as the weighted dis-
similarity obtained better quality values for all datasets but
its performance is highly influenced by the values of weights
and the set-level dissimilarity. By tuning the weights to a
dataset one can see that there exist dissimilarity measures
in agreement with the existing partition, but such tuned
measures should be evaluated with respect to their general-
ization ability before using them in practice. The relative
superiority of the dissimilarity with (almost) binary weights
should be interpreted with caution, as C-Index could be bi-
ased in the case of binary measures (as those obtained by
combining dH with binary code-level dissimilarities). In or-
der to analyze the influence of the cluster validity index on
the dissimilarity measures assessment we conducted an anal-
ysis for two other well-known indices: Silhouette (to be max-
imized) and Davies-Bouldin (to be minimized). The results
obtained for the partition consisting of normal birth and
preterm birth groups are presented in Table 4. The main
remarks inferred from these results are:



Set Code C-Index for data set 1 C-Index for data set 2
level level all normal vs. normal vs. all normal vs. normal vs.

groups preterm low weight groups preterm low weight

δ1000 0.373 0.546 0.559 0.412 0.512 0.609
δ0100 0.862 0.233 0.201 0.690 0.134 0.141
δ0010 0.582 0.075 0.033 0.338 0.027 0.044
δ0001 0.284 0.0 0.0 0.060 0.0 0.0

dH δα∗ 0.364 0.038 0.026 0.118 0.014 0.023
α∗ ' (0.04,0,0.01,0.95) (0,0,0.12,0.88) (0,0,0.43,0.57) (0,0,0.04,0.96) (0,0,0.2,0.8) (0,0.02,0.18,0.8)

δαr 0.547 0.406 0.389 0.590 0.385 0.390
αr ' (0.42,0, (0,0, (0,0,) (0,0,) (0,0.01, (0,0.03,

0.26,0.32) 0.5,0.5) 0.5,0.5) 0.42,0.58) 0.48,0.51) 0.47,0.5)

δWP 0.576 0.446 0.415 0.474 0.358 0.385
δLin 0.574 0.423 0.401 0.476 0.321 0.351
δSBI 0.500 0.480 0.465 0.448 0.413 0.458

δ1000 0.186 0.490 0.598 0.234 0.560 0.695
δ0100 0.365 0.366 0.429 0.331 0.352 0.426
δ0010 0.374 0.359 0.426 0.375 0.348 0.435
δ0001 0.458 0.327 0.393 0.399 0.300 0.339

dD δα∗ 0.186 0.326 0.391 0.234 0.295 0.339
α∗ ' (1,0,0,0) (0,0.24,0,0.76) (0,0.17,0.05,0.78) (1,0,0,0) (0,0.19,0,0.81) (0,0.04,0,0.96)

δαr 0.517 0.512 0.545 0.507 0.501 0.536
αr ' (0.47,0.26, (0.20,0.25, (0.18,0.25, (0.36,0.30, (0.19,0.27, (0.15,0.27,

0.18,0.09) 0.24,0.31) 0.26,0.31) 0.18,0.16) 0.21,0.33) 0.18,0.40)

δWP 0.371 0.346 0.412 0.338 0.330 0.408
δLin 0.413 0.348 0.417 0.358 0.331 0.398
δSBI 0.327 0.362 0.433 0.316 0.350 0.447

Table 3: Values of C-Index corresponding to various combinations of the ICD-10 taxonomy based dissimilarity
with set-based dissimilarities. The evaluation is based on the overall partitions (14 groups in data set 1 and
16 groups in data set 2) and partitions containing two groups (normal vs. pre-term birth cases and normal
vs. low weight at birth cases). α∗ denotes unconstrained (sub)optimal values of the weights while αr denotes
regularized (sub)optimal weights’ values.

Set Code Data set 1 (normal vs preterm) Data set 2 (normal vs preterm)
level level C-Index (↓) Silhouette (↑) Davies-Bouldin (↓) C-Index (↓) Silhouette (↑) Davies-Bouldin (↓)

δα∗ 0.038 0.043 1.859 0.014 0.037 1.927
α∗ ' (0,0,0.12,0.88) (0.43,0,0.57,0) (1,0,0,0) (0,0,0.2,0.8) (0.02,0,0.98,0) (0.01,0,0.99,0)

dH δαr 0.406 0.035 1.917 0.385 0.028 1.938
αr ' (0,0, (0.26,0.22, (0.36,0.17, (0,0.01, (0.26,0.25, (0.29,0.24,

0.5,0.5) 0.31,0.21) 0.28,0.13) 0.48,0.51) 0.27,0.22) 0.34,0.13)

δWP 0.446 0.035 1.924 0.358 0.028 1.942
δLin 0.423 0.023 1.951 0.321 0.025 1.949
δSBI 0.480 0.042 1.904 0.413 0.031 1.933

δα∗ 0.326 0.139 1.510 0.295 0.114 1.616
α∗ ' (0,0.24,0,0.76) (1,0,0,0) (0.98,0.02,0,0) (0,0.19,0,0.81) (1,0,0,0) (0.98,0.02,0,0)

dD δαr 0.512 0.092 1.796 0.501 0.075 1.844
αr ' (0.20,0.25, (0.27,0.31, (0.35,0.25, (0.19,0.27, (0.30,0.22, (0.31,0.26,

0.24,0.31) 0.27,0.15) 0.21,0.19) 0.21,0.33) 0.27,0.21) 0.24,0.19)

δWP 0.346 0.089 1.811 0.330 0.073 1.853
δLin 0.348 0.076 1.842 0.331 0.066 1.870
δSBI 0.362 0.103 1.764 0.350 0.083 1.818

Table 4: Values of C-Index, Silhouette and Davies-Bouldin indicators corresponding to various combinations
of the ICD-10 taxonomy based dissimilarity with set-based dissimilarities. Smaller values for C-Index and
Davies-Bouldin indices and larger values for the Silhouette index suggest better agreement between the
(dis)similarity measure and the observed partition.



(i) The best validity indices are still obtained for the weighted
measure but in the case of Silhouette and Davies-Bouldin
indices the usage of Dice variant produces better re-
sults than the standard Hausdorff distance.

(ii) When the weighted dissimilarity is combined with dD
the most discriminant level seems to be the first one
(the chapter level), which would mean that in order to
discriminate preterm cases it would be enough to use
only the chapter code (the disease family).

(iii) With respect to Silhouette and Davies-Bouldin indices,
the dissimilarity based on the taxonomy structure (δSBI)
leads to better results than Wu-Palmer (δWP ) and Lin
(δLin) dissimilarities, thus it could be used as an alter-
native to the weighted dissimilarity.

The relative superiority of binary measures observed in
the experiments was not expected and finding an explana-
tion of this is an open question.

7. CONCLUSIONS AND FURTHER WORK
Aiming to identify appropriate (dis)similarity measures

between patient profiles containing lists of diagnostic codes
we analyzed several taxonomy-based measures and proposed
a weighted version of the edge-counting similarity. The
proposed code-level measure satisfies the strong triangle in-
equality and generalizes both the simple binary measure as
well as the Wu-Palmer distance. In order to extend the
code-level dissimilarity to lists of codes we combined it with
two variants of the Hausdorff distance between sets. Aiming
to assess the quality of a dissimilarity measure we proposed
to estimate how well the measure can explain observed data
partitions using known cluster validity indices. Using an
evolutionary algorithm we estimated the weight values which
optimizes the score provided by a cluster quality index.

The experimental analysis conducted for datasets collected
from obstetrics and neonatology wards of two hospitals re-
vealed the fact that the weighted code-level (dis)similarity
leads to better scores than other taxonomy-based measures.
However this measure is sensitive with respect to the weights
values and the obtained results are influenced by the used
cluster validity index. The dissimilarity based on the tax-
onomy structure (δSBI) could be a practical alternative, as
it does not require parameter tuning. On the other hand,
there is not enough evidence to prove that one of the set-level
distances is better than the other one.

Assessing the quality of the dissimilarity measure in a
multi-criterial framework by using several validity indices
(e.g. C-Index, Silhoutte, Davies-Bouldin etc.) is one of the
lines of further research. On the other hand, further ex-
tensions involving hybridization of different taxonomy-based
measures and their evaluation in the context of full patient
profiles (containing other medical information besides the
list of diagnostics) are to be addressed in future.
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