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Abstract

In Differential Evolution algorithms the crossover operator allows the con-
struction of a new trial element starting from the current and mutant elements.
Thus it controls which and how many components are mutated in each element
of the current population. This work aims to analyze the impact the crossover
operator and its parameter, the crossover rate, has on the behavior of Differ-
ential Evolution. The influence of the crossover rate on the distribution of the
number of mutated components and on the probability for a component to be
taken from the mutant vector (mutation probability) is theoretically analyzed
for several variants of crossover, including classical binomial and exponential
strategies. For each crossover variant the relationship between the crossover
rate and the mutation probability is identified and its impact on the choice and
adaptation of control parameters is analyzed theoretically and numerically. The
numerical experiments illustrate the fact that the difference between binomial
and exponential crossover variants is mainly due to different distributions of the
number of mutated components. On the other hand, the behavior of exponen-
tial crossover variants was found to be more sensitive to the problem size than
the behavior of variants based on binomial crossover.

Key words: differential evolution, binomial crossover, exponential crossover,
parameter control, self-adaptation

1. Introduction

Differential evolution (DE) [20] is a population based stochastic meta-heuristic
for global optimization on continuous domains related both with simplex meth-
ods (e.g. Nelder Mead) and evolutionary algorithms. Due to its simplicity,
effectiveness and robustness, DE has been successfully applied in solving op-
timization problems arising in different practical applications (e.g. parameter
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identification [27], image processing [6],[13], data clustering [16], optimal design
[2], scheduling [12] etc).

The main particularity of DE is that it constructs, at each generation, for
each element of the population a so-called mutant vector. This mutant vector is
constructed through a specific mutation operation based on adding differences
between randomly selected elements of the population to another element. For
instance one of the simplest and most used variant to construct a mutant vector,
y, starting from a current population {1, ..., 2, } is based on the following rule:
y =2y +F-(xp, —xr,) where r1, r» and r3 are distinct random indices selected
from {1,...,m} and F > 0 is a scaling factor. This difference based mutation
operator which is more related to a recombination than to a classical mutation
operator is the distinctive element of DE algorithms. Its main property is the
fact that it acts as a self-referential mutation allowing a gradual exploration of
the search space [17].

Based on the mutant vector, a trial vector is constructed through a crossover
operation which combines components from the current element and from the
mutant vector, according to a control parameter CR € [0, 1], called crossover
rate. This trial vector competes with the corresponding element of the current
population and the best one, with respect to the objective function, is trans-
ferred into the next generation.

The behavior of DE is influenced both by the mutation and crossover opera-
tors and by the values of the involved parameters (e.g. F' and CR). During the
last decade a lot of papers addressed the problem of finding insights concerning
the behavior of DE algorithms. Thus, parameter studies involving different sets
of test functions were conducted [7], [11], [15] and a significant number of adap-
tive and self-adaptive variants have been proposed [3],[10],[19],[25],[31]. Most of
these results were obtained based on empirical studies. Despite some theoretical
analysis of the DE behavior [1],[4],[17],[29],[30] the theory of DE is still behind
the empirical studies. Thus theoretical insights concerning the behavior of DE
are highly desirable.

On the other hand, most of DE variants and studies are related with the
mutation operator. The larger emphasis on mutation is illustrated by the large
number of mutation variants, some of them being significantly different from
the first versions of DE (e.g. [1], [9]). The crossover operator attracted much
less attention, just two variants being currently used, the so-called binomial
and exponential crossover. The exponential crossover is that proposed in the
original work of Storn and Price [20], but in applications the binomial variant
presented in [21] is more frequently used.

The current knowledge concerning the influence of the crossover strategy on
the behavior of DE is limited to some experimental remarks. Besides state-
ments like ” The crossover method is not so important ... and binomial is never
worse than exponential’ and 7 if you choose binomial crossover like, CR is usu-
ally higher than in the exponential crossover variant” [34] or some experimental
studies involving both binomial and exponential variants [11] no systematic anal-
ysis of crossover strategies in DE was conducted. Thus there still are questions
to be answered, e.g.: (i) is binomial crossover better than exponential crossover



or viceversa? (ii) does the crossover variant has an impact on the choice of DE
control parameters ? (iii) is the behavior of crossover influenced by the problem
size 7

The aim of this paper is to analyze both from a theoretical and a numerical
point of view the influence the crossover variant has on the behavior of DE and
to try to find answers to above mentioned questions. Some preliminary results
concerning the comparison between the binomial and exponential crossover were
presented in [32] where relationships between the crossover rate (CR) and the
mutation probability (the probability that a component of the trial vector comes
from the mutant vector) were obtained for both strategies. Based on these
results one can explain why adequate values of the crossover rates are different
for different crossover strategies.

In this paper we extend the analysis started in [32] by studying the properties
of other related crossover strategies and the impact of crossover on the choice
of adequate values for CR and on the behavior of self-adaptive variants based
on uniformly random selection of the crossover rate values (as jDE proposed
by Brest [3]). Section 2 contains an overview of the main DE strategies and
of their particularities. Section 3 presents the properties of the classical bino-
mial and exponential crossover operators and some new implementation versions
based on the idea of exponential crossover. For each variant the distribution
of the number of mutated elements is derived and the relationship between the
crossover rate and the mutation probability is analyzed. In Section 4 is pre-
sented an experimental parameter study aiming to emphasize the influence the
crossover type has on the behavior of DE for some test functions. An analysis of
the impact of crossover type on the choice of appropriate values for the control
parameters and on some self-adaptive variants is presented in Section 5. Some
conclusions are presented in Section 6.

2. Overview of Differential Evolution

In the following we shall consider objective functions, f : D C R — R, to
be minimized, thus we are dealing with minimization problems of size n. The
overall structure of differential evolution is typical for evolutionary algorithms
consisting of two main steps: initialization and an iterative transformation of a
population of vectors from D C R™ which are candidate solutions. Each itera-
tion corresponds to an evolutionary generation and consists of constructing new
elements by mutation and crossover, evaluating the new elements and selecting
those which are included in the next generation.

In the following we will denote by {z1(g),z2(g),...,zm(g9)} the population
corresponding to the generation g. For each element z; in the current population
is constructed a mutant element denoted by y; and from x; and y; is constructed
a trial element denoted by z;. By using these notations the general structure
of the differential evolution is described in Algorithm 1, the particularities of
a given DE instance being related with the particularities of the mutation and
crossover operators. The selection operator is the same for almost all imple-
mentations of a DE algorithm: the trial element is compared with the current



element and the best of them is transferred in the new population. The choice of
the stopping condition depends, as in the case of most evolutionary algorithms,
on the knowledge we have on the problem. In the case of numerical studies
on test functions, the evolution is usually stopped when the optimal value was
approximated within a given accuracy or the number of function evaluations
reached an upper bound. In the case of real world problems when neither the
optimal value nor the length of the evolution is known in advance information
on the progress of evolution could be used. In [33] is presented a comprehen-
sive study on different stopping criteria. The most promising seem to be those
related with the population diversity.

Algorithm 1 The general structure of a generational DE
1: Population initialization X (0) < {z1(0),...,%»(0)}
2: g+ 0
3. Compute {£(z1(9)),-- ., f(m(9)}

4: while the stopping condition is false do
5. fori=1,m do
6 y; < generateMutant(X (g))

7: z; +—crossover(z;(9),y;)

8

9

if f(2:) < f(zi(g)) then
CUi(g + 1) — Z;

10: else
11: zi(g+1) « z;(9)
12: end if

13:  end for
14: g+ g+1
15:  Compute {f(z1(9)),-.-, f(xm(9))}

16: end while

By combining different mutation and crossover operators various schemes
have been designed. In the DE literature these schemes are specified by using
the convention DE/a/b/c where a and b specify the manner of constructing the
mutant vector and ¢ denotes the crossover type. Several of these variants are
resumed in the following.

2.1. Differential mutation

The construction of a mutant vector, y;, consists of selecting from the current
population a so-called base vector, z,,, and of adding to it a scaled difference
between two other vectors, x,, and x,,:

Yi = Try + F- ('TT2 - l‘r3), Fe (072) (1)

The constant F' in eq. (1) is a scale factor which influences the diversity of
the set of mutant vectors. The indices ry, 72, r3 are usually randomly selected
from {1,...,m} but such they satisfy the restriction to be distinct and different
of i. The influence of this restriction on the DE behavior is analyzed in [17]



where is stated that it enables DE to achieve a good convergence. Choosing
randomly the base vector leads to the class of DE/rand/1/* algorithms. If
instead of using one difference as perturbation of the base vector one uses two
differences, e.g. y; = ©p, + F - (¢, — ©py) + F - (x4, — ), One obtains the
class of DE/rand/2/* algorithms. Using more than one difference did not prove
to bring a significant difference in the DE behavior, therefore this variant is
much less used as the classical DE/rand/1/*. The distribution of trial points
generated by the classical DE/rand/1 mutation is derived in [1] where is also
proposed a differential free trial point generation based on approximating the
derived distribution.

Besides the random choice of the base vector there are other variants which
involves the best element or the current element of the population. Thus if the
base vector is the best one in the current population, z,, then one obtains the
DE/best/*/* class of algorithms. Other variants are: DE/current-to-best/* /*,
which uses Az, + (1 — A)z; instead z,,, and DE/current-to-rand/*/*, which uses
Azr, + (1 — AN)z;. In both cases A € (0,1) controls the influence of the best or
the random element on the base vector. Another variant to construct the base
vector is to compute the center of the triangle formed by three randomly selected
elements as in trigonometric DE and to use three difference terms corresponding
to all pairs of elements [9].

Recently, were developed variants which limits the choice of the vectors
involved in the mutant element to a neighborhood, defined by a ring topology,
of the current element [5],[14]. Another variant of choosing the parents is that
based on ranking the population elements [23]. This approach is based on the
idea that by increasing the parents selection pressure one can improve the ability
of DE to deal with nonseparable functions.

Since the aim of this work is to analyze the impact of crossover on the DE
behavior all numerical tests were made using the classical DE/rand/1/* variant.

2.2. Crossover variants

In Evolutionary Algorithms the crossover operator usually combines features
from different parents. In the case of DE algorithms, since the mutation oper-
ator is already based on a recombination of individuals, the role of crossover is
somewhat different. It just allows the construction of an offspring (called trial
vector), z;, by mixing components of the current element, z;, and of that gen-
erated by mutation, y;. There are two main crossover variants for DE: binomial
and exponential.

The binomial crossover constructs the trial vector by taking, in a random
manner, elements either from the mutant vector or from the current element,
as is described in eq. (2).

i_ [yl U <CRorj=k

! { z]  otherwise

: i=Tn (2)

In eq. (2) U; denotes a random value generated for each j in accordance with
a uniform distribution over [0,1], CR € [0,1] is the crossover rate and k is a



randomly selected index from {1,...,n}. The use of k ensures that at least one
component is taken from the mutant vector. The name of this crossover type
comes from the property that the number of components taken from the mutant
vector has a binomial distribution [17]. This binomial crossover is very similar
to the so-called uniform crossover used in evolutionary algorithms.

The exponential crossover was designed to be similar to one point and two
points crossover variants used in genetic algorithms. Thus the trial vector con-
tains a sequence of consecutive components (in a circular manner) taken from
the mutant vector. The structure of the trial vector can be described as in

eq. (3) where k € {1,2,...,n} is a random index, L is a random value in
{1,2,...,n} and (j), isjif j <nmand j—nif j >n.
ZZ:{ yl] 1f]€{‘k,(k+1>n,...(k+L Dt =Tn 3)
x; otherwise

In [17] is mentioned that Prob(L = h) = (1 — CR)CR"! which corre-
sponds to the geometric distribution, the discrete counterpart of the continuous
exponential distribution. This motivates the name of this crossover type. Expo-
nential crossover was used in the first version of DE algorithm [20] but currently
most of DE implementations use the binomial crossover.

The main difference between binomial and exponential crossover is the fact
that while in the binomial case the components inherited from the mutant vector
are arbitrarily selected in the case of exponential crossover they form one or two
compact subsequences. The impact of this difference on the effectiveness of
differential evolution is not yet fully understood. The choice of a crossover
variant is difficult as long as there are no results establishing the superiority of
one variant for a given class of problems.

Both binomial and exponential crossover have as main disadvantage the fact
that they are not rotationally invariant processes making differential evolution
less effective for rotated functions. On the other hand completely eliminating
the crossover leads to a poor behavior of DE for multimodal problems. In or-
der to solve this problem, K. Price proposed to replace the crossover operator
with another way of recombining the population elements, similar to arithmetic
recombination, obtaining the so-called DE/rand/either-or variant [17]. More
recently, the same author proposed another rotationally invariant DE variant
which has the particularity of eliminating the drift bias from its trial vector gen-
erating function [18]. The analysis conducted in this paper focuses on binomial,
exponential and related crossover variants, thus the properties of crossover-free
DE variants are not addressed.

2.3. Controlling the DE behavior

The behavior of the DE algorithms is influenced both by the type of mutation
and crossover operators and by their control parameters: scale factor, F, and
crossover rate, C' R. The scale factor influences the size of perturbation applied
to the base vector and has an important role in ensuring the population diversity.
Small values of F' can lead to premature convergence, i.e. the population loses



its diversity even in the absence of the selection pressure. In [30] is proved that
if £ < +/(1—pm/2)/m, with p,, the probability of a component in the trial
element to be inherited from the mutant element, then the DE algorithm will
prematurely converge. The range of values for F' which proved to be effective
in practice is [0.3, 1] [17].

The behavior of both binomial and exponential crossover is influenced by the
parameter C R. Since the parameter C' R controls the number of components in-
herited from the mutant vector it can be interpreted as a mutation probability.
Most parameter studies concludes that C'R influences the convergence speed
and the adequate value depends on the problem to be solved [7]. The first work
which establishes a clear relationship between the values of CR and the prop-
erties of the objective function is [15] where is stated the fact that for separable
functions small values of CR (CR < 0.2) are adequate while for nonseparable
ones values larger than 0.9 should be used. The explanation is intuitive as long
as for small values of C'R the average number of components inherited from
the mutant vector is small and, therefore, the evolutionary process takes place
almost separately on each component, favoring the separable functions.

All these parameter studies were conducted in the case of binomial crossover
and a natural question is if their conclusions remain valid in the case of expo-
nential crossover. In [17] is mentioned that ”the average number of parameters
mutated for a given CR depends on the crossover model (e.g. exponential or
binomial) but in each a low CR corresponds to a low mutation rate”. However
in the current DE literature there are no results concerning a quantitative re-
lationship between the type of crossover and the mutation probability and/or
the average number of mutated components. One of the main aims of this pa-
per is to try to fill this gap by providing quantitative relationships between the
mutation probability and C'R for both types of crossover.

In order to simplify the design of DE algorithms several adaptive and self-
adaptive variants have been proposed in the last decade. The adaptive variants,
e.g. FADE [10], change the values of F' and CR according to the behavior of the
algorithm. In FADE some fuzzy rules are used to establish new values of the
parameters based on the changes in the population. The self-adaptive variants
assign a pair of parameters to each element in the population. The most known
self-adaptive variants are SaDE [19] and jDE [3]. In both cases the individual
parameters are changed during the evolution by using a probability distribution,
normal distribution in the case of SaDE and uniform distribution in the case of
jDE. The self-adaptive variants were designed for DE with binomial crossover
thus a natural question is if they lead to a similar effect when they are applied
in the case of exponential crossover.

The adaptation process can involve, besides the parameters F' and C'R, also
the population size, as in [24], or even the strategy, as in SaDE or in the com-
petitive variant proposed in [26] (where both the parameters and the crossover
type are randomly chosen at each generation based on probabilities according to
the success rate of candidates). The results presented in [26] illustrate the fact
that by combining binomial and exponential crossover one can obtain a more
robust DE.



3. Properties of binomial and exponential crossover

Several authors remarked the fact that the adequate value for CR depends
on the crossover type [8],[11],[17]. However the current knowledge concerning
this issue is limited to the distribution of the random variable L, denoting the
number of mutated components. Thus the probabilities that the trial element
inherit exactly h components from the mutant vector derived in [17] are: P(L =
h) = C"~1CR" (1 — CR)™ ", in the case of binomial crossover and P(L =
h) = (1 — CR)CR""! for exponential crossover.

Both in binomial and exponential crossover the parameter C'R controls the
number of components taken from the mutant vector influencing the probabil-
ity that a component is mutated. Such a probability is usually called mutation
probability (pn,). It is expected that the impact of each crossover type is in-
fluenced by p,,. Therefore, in the following we shall analyze the relationship
between C'R and p,, for binomial, exponential and other related crossover vari-
ants.

3.1. Binomial crossover

The way the trial element is constructed from the mutant and the current
element of the population is illustrated in Algorithm 2. In the description of the
algorithm, irand denotes a generator of random values uniformly distributed on
a finite set, while rand; simulates a uniformly distributed random variable on
a continuous domain for each component j. The condition ”rand;(0,1) < CR
or j = k7 of the if statement in Algorithm 2 ensures the fact that at least one
component is taken from the mutant vector.

Algorithm 2 Binomial crossover

crossoverBin (z,y)
1: k+ irand({1,...,n})
2: for j=1,n do

3:  if rand;(0,1) < CR or j =k then
4 20—yl

5 else

6: 20—l

7 end if

8: end for

9: return z

The implementation of the binomial crossover is based on the simulation of
n independent Bernoulli trials, the result of each trial being used in selecting
a component, of the offspring from the mutant vector or from the current ele-
ment. If the constraint of having at least one mutated component is applied, the
successful event in each Bernoulli trial is the union of two independent events,
one of probability CR (corresponding to the event ”rand;(0,1) < CR”) and
one of probability 1/n (corresponding to the event ”j = irand({1,...,n})”).



Since, for two independent events A and B the probability of their union is
Prob(A U B) = Prob(A) + Prob(B) — Prob(A)Prob(B), it follows that the
probability that a component is mutated is p,, = CR(1 — 1/n) + 1/n.

The number, L, of components selected from the mutant vector is a random
variable with values in {1,...,n} having the property that L = L' + 1 where L'
has a binomial distribution of parameters n — 1 and CR. Thus Prob(L = h) =
Prob(L' = h—1) = C""1CR"'(1 — CR)" " which is the distribution derived
also in [17]. The average number of mutated components is E(L) = E(L')+1 =
(n — 1)CR + 1. These properties of the binomial crossover can be summarized
as:

Proposition 1. In the case of binomial crossover the mutation probability, py,,
and the number of mutated components, L, satisfy the following properties:

pm =CR(1—1/n)+1/n
Prob(L = h) = C"=ICR" '(1-CR)" ™", he{l,...,n} (
E(L)=npn=mn-1)CR+1

— —
S Ut
= Z

3.2. Classical exponential crossover

The exponential crossover has been proposed in the first version of Differen-
tial Evolution [20]. It is similar with the two-point crossover where the first cut
point is randomly selected from {1,...,n} and the second point is determined
such that L consecutive components (counted in a circular manner) are taken
from the mutant vector. In their original paper [20], Storn and Price suggested
to choose L € {1,...,n} such that Prob(L = h) = CR". It is easy to check
that this is not a probability distribution on {1,...,n} but just a relationship
which suggest that the probability of mutating h components increases with
the parameter C'R and decreases with the value of h. Such a behavior can be
obtained by different implementations. The most frequent implementation is
that described in Algorithm 3 where (j + 1), is just j+ 1 if j < n and is 1 when
j=n.

Algorithm 3 Exponential crossover

crossoverExp (z,y)
1z x; k+idrand({l,...,n}); j < k; L+ 0
2: repeat
32 ey je G+ L L+1
4: until rand;(0,1) > CRor L=mn
5: return z

If the stopping condition of the repeat loop in the Algorithm 3 would be
just rand;(0,1) > CR then L would take values according to the geometric
distribution (which is the discrete counterpart of the continuous exponential
distribution) on {1, 2, ...} corresponding to the parameter 1—CR (C'R being in-
terpreted as the success probability). In such a situation the probability that the



number of mutated components is h would be Prob(L = h) = (1—CR)CR" !,
which is the probability derived in [17]. However in the exponential crossover
the number of mutated components is bounded by n, thus we are dealing with
a truncated geometric distribution.

Taking into consideration the fact that the repeat loop stops whenever L
becomes n it follows that the probability distribution of L is given by:

(1—CR)CR"' if1<h<n

Prob(L = h) = { C R Fh—n (7)

Using eq. (7), the average of the random variable L can be computed as follows:

n—1
E(L) = (1-CR)» hCR"™+nCR""
h=1
= (1-CR)1+2CR+...+(n—1)CR" %) +nCR" !
1-CR*! 1—CR" 2 . 21—CR
+nCR" !
= 1+CR+CR*+...+CR" 2~ (n—-1)CR" ! +nCR" !
1-CR"

1-CR

It remains now to find the value of p,, in the case of exponential crossover.
There are two random variables simulated in the implementation of exponential
crossover: the index, k, of the first mutated component and the number of
mutated components, L. An arbitrary component, j, will be mutated if d(j, k) <
L, where d(j,k) =j—kif j > k and d(j, k) =n+j — k if j < k. Since k can
take any value from {1,...,n} with probability 1/n, the probability that an
arbitrary component, j, is replaced with a component from the mutant vector
1S:

n n—1
Prob(z) =y’) = % Z Prob(d(j,k) < L) = % dzz:o Prob(L > d)
Since
n—1
Prob(L > d) Z Prob(L=h)= > (1-CR)CR"'+CR"'=CR*
h=d+1 h=d+1
it follows that
o 1¢ — CR"
P J —_- R
e =) = 5ot =

Thus the properties satisfied by the exponential crossover can be summarized
as follows.



Proposition 2. In the case of exponential crossover the mutation probability,
Pm, and the number of mutated components, L, satisfy the following properties:

1-CR"
=R ®)
— h—1 .
_C' n
B(L) = % (10)

Thus unlike the case of binomial crossover where the mutation probability
depends linearly on C'R, in the case of exponential crossover there is a nonlinear
dependence.

3.3. Related crossover variants

Let us go back to the particularities of the crossover presented in the first
DE variant [20]. The main properties of these crossover operator are: (i) the
number of mutated components, L, is a random variable with the property that
Prob(L = h) is proportional to CR"; (ii) the trial vector contains L consecutive
mutated components starting from a random position. Starting from these par-
ticularities of the classical exponential crossover other implementation variants
can be developed.

A first variant is based on the idea of simulating a random variable L taking
values in {1,...,n} based on the probability distribution Prob(L = h) = ¢-CR"
where ¢ is a normalization constant. It is easy to find that ¢ = (1-CR)/(CR(1—
CR™)) thus the corresponding distribution probability is:

1-CR

PT'Ob(L = h) = W

CR"1 (11)
The implementation of such a variant involves three main steps: (i) generate
L according to the probability distribution (11); (ii) randomly select a starting
position from {1,...,n}; (iil) mutate L positions starting with the selected one.
This crossover strategy is described in Algorithm 4.

Based on eq. (11) one can easily compute the average number of mutated
components:

_ 1-CR - h—1
E(L) = I_CRnhZ:;hoR
= LU+ 20RTBCR 4+ (1= DOR £ nCR )
= L-CR n—l n—2
= 1—0Rn((1+"'+0R )+ CR(1+...+CR" %) +...

...+ CR"2(1+CR)+ CR"™)



Algorithm 4 Variant of exponential crossover based on the simulation
of the random variable L
crossover VariantA (z,y)

1: u < rand(0,1); p+ (1 —=CR)/(1 = CR");s + p; L + 1;

2: while u < s do

3: L+ L+1;p+p-CR;ys+s+p

4: end while

5: z 4+ x5k irand({l,...,n}); h+ 1; j « k;
6: repeat

7 ey i G+ heh+1

8 until h =L

9: return z

1-CR (1-CR" 1- CR™ ! _,1-CR
= 1—0R”<1—OR FORT e e TOR 1—03)
_ ]' n—1 _ n
= 1+ CR+...CR"™ —nCR")
1 1- CR" N1 nCR"
1—C’R”<1—CR _nCR>_1—C’R 1-CR"

As in the case of classical exponential crossover the mutation probability
n—1

1
satisfies p,, = - Z Prob(L > d). Using the probability distribution (11) one

d=0
obtains:
Prob(L >d) = Zn: L=OR opner ZCR”
1—CR» 1—0Rn
h=d+1
1-CR (&, N
= m(zm ZCR)
_ 1-CR (1-CR" 1-CR'\ _CR'-CR"
1-CR"\1-CR 1-CR/) 1-CR»
Thus
_l’fcm—om_ 1 CR"
Pm =74 1-CR* n(l—CR) 1-CRn

d=0
and the properties of this variant of the exponential crossover can be summarized
as follows:

Proposition 3. In the case of exponential crossover variant implemented as in
Algorithm J the mutation probability, p,,, and the number of mutated compo-
nents, L, satisfy the following properties:

1 cCr
bm = 1—CR) 1-CR"

(12)



_ _ ]. - CR h—1
Prob(L = h) = t—e5CR (13)
1 nCR"

“1-CR 1-Cr»

E(L) (14)

An undesirable property of this variant is the fact that when CR goes to
1 the corresponding mutation probability goes to (n + 1)/(2n) not to 1 as we
would desire. In order to correct this we can use instead of the value L generated
in Algorithm 4 the adjusted value: L' = min{n,L+ |L-CR(n —1)/(n+1)]}
where |-| denotes the lower integer part. The corresponding adjusted mutation
probability is obtained by multiplying the expression of p,, in eq. 12 by CR(n —
1)/(n+ 1) + 1. In all following references of Algorithm 4 it is supposed that L
and p,, are adjusted as is mentioned above.

Both the classical exponential crossover and the above described variant
differ from the binomial crossover not only by the fact that they take consecutive
components from the mutant vector but also by a different number of mutated
components for the same value of the crossover rate, CR. In order to analyze
just the influence of taking consecutive components from the mutant vector we
introduce a simpler, less stochastic, strategy described in Algorithm 5.

Algorithm 5 Crossover variant based on taking L = [CR(n — 1) + 1]
consecutive elements from the mutant vector
crossover VariantB (z,y)

1: z < x5 k+irand({1,...,n}); j < k;
2: L« [CR(n—1)+1]; h+ 1;

3: repeat

4@ ey i G+ heh+1
5: until h = L

6: return z

This variant does not use a random, but a fixed number of mutated com-
ponents (L = |[CR(n — 1) + 1|) and has similar properties with the binomial
crossover with respect to the mutation probability which is p,, = |[CR(n —1) +

1]/n.

3.4. Implementation issues

In the implementation of random algorithms an important issue is that of
the number of rand functions calls. The four crossover variants described above
differ not only by the probabilities of the number of components taken from
the mutant vector but also by the number of rand functions calls. Thus the
binomial variant needs n+1 calls while the number of calls in the case of classical
exponential crossover is given by the random variable I whose mean value is
npm < n plus one call of irand which generates the index of the first replaced
component. On the other hand the variant described in Algorithm 4 uses just
two calls disregarding the value of n (one is used in the simulation of L and
one to select the first mutated component). The classical implementation of



the exponential crossover can be easily transformed such that only two random
calls are enough (as is illustrated in Algorithm 6). The difference between the
Algorithms 4 and 6) is related only to the number of components taken from
the mutant vector.

Algorithm 6 Variant of exponential crossover based on the simulation
of the random variable L
crossoverExpModified (z,y)

1: u < rand(0,1); p< 1 —CR;s < p; L < 1;

2: while u < s do

3: L+ L+1;

4: if L <n then

5: pp-CRis+s+p

6: else

7 s+ 1

8: end if

9: end while

10: z + x5 k « irand({1,...,n}); h + 15 j < k;
11: repeat

122 2yl je— G+ heh+1
13: until h = L

14: return z

The variants based on a deterministic value for L (as in Algorithm 5), use
just one call of the irand function. For high-dimensional problems implemen-
tation versions which use a small number of rand functions calls could lead to
important time savings with respect to the classical binomial and exponential
crossover implementations. However the possibility of replacing the classical
crossover implementations with variants as those described in Algorithms 4 and
5 is still to be investigated with respect to their impact on the behavior of DE.

3.5. Crossover rate and mutation probability

For all crossover variants described in the previous subsections the crossover
rate influences the number of components taken from the mutant vector. How-
ever, as Propositions 1-3 state the relationship between the crossover rate, CR,
and the mutation probability, p,, is different for different crossover variants.

More specifically, the dependence between p,, and CR is linear in the case
of binomial crossover and nonlinear in the case of exponential crossover vari-
ants. Figure 1 illustrates the fact that for the same value of CR € [0,1] the
mutation probability is smaller in the case of exponential crossover than in the
case of binomial one, the difference being more significant if n is larger. On the
other hand the mutation probability corresponding to the variant described in
Algorithm 4 is slightly larger than that corresponding to classical exponential
crossover. However this difference becomes smaller as the problem size increases.

The impact of the problem size on the values of p,, is also illustrated by the
values in Table 1 where corresponding values for CR and p,, are tabulated for
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Figure 1: Influence of CR on the mutation probability in the case of binomial crossover
(dashed line), classical exponential crossover (thick continuous line) and crossover described
in Algorithm 4 (normal continuous line)

CR pm(n = 50) pm(n = 100) pm(n = 500)
Bin. Exp. Alg. 4 Bin. Exp. Alg. 4 Bin. Exp. Alg. 4

0 0.02 0.02 0.02 0.01 0.01 0.01 0.002 0.002 0.002
0.1 0.118 0.022 0.024 0.109 0.011 0.012 0.102 0.002 0.002
0.2 0.216 0.025 0.029 0.208 0.012 0.014 0.202 0.003 0.003
0.3 0.314 0.028 0.036 0.307 0.014 0.018 0.301 0.003 0.004
0.4 0412 0.033 0.046 0.406 0.016 0.023  0.401 0.003 0.005
0.5 051 0.04 0.059 0505 0.02 0.029 0.501 0.004 0.006
0.6 0.608 0.05 0.078 0.604 0.025 0.039 0.601 0.005 0.008
0.7 0.706 0.066 0.111  0.703 0.033 0.056 0.701 0.007 0.011
0.8 0.804 0.099 0.176 0.802 0.05 0.089 0.8 0.01  0.017
0.9 0902 0.198 0.363 0.901 0.099 0.188 0.9 0.02  0.037
0.92 0.921 0.246 0.441 0.920 0.124 0.237 0.92 0.025 0.047
095 0.951 0.369 0.605 0.950 0.198 0.374 095 0.04 0.077
0.97 0.970 0.521 0.749 0.970 0.317 0.552  0.97  0.067 0.131
0.99 0.990 0.789 0.913 0.990 0.633 0.832 0.99 0.198 0.384
1 1 1 1 1 1 1 1 1 1

Table 1: Correspondence between C'R and the mutation probability, p,, for binomial and
exponential crossover variants.



the crossover variants given in Algorithms 2, 3 and 4 and three problem sizes
(n =50, n = 100, n = 500).

For large values of n the nonlinear dependence between p,, and CR is char-
acterized by the presence of two regimes: a first one where large changes in the
CR values lead to small changes in p,,, and a second one where small changes
in CR lead to large changes in p,,. For each value of n one can identify a crit-
ical value of CR which separates these two regimes. As n is larger this value
becomes closer to 1. For n = 100 such a critical value for CR is near 0.9 (when
pm approaches 0.1) while for n = 500 the critical value is around 0.98. These
properties suggest that for high-dimensional problems for most values of CR
the exponential crossover leads to very small mutation probabilities while the
range of C' R values to which p,, is sensitive is very narrow. Thus, in the case of
problems asking for high mutation probability, exponential crossover would not
work except for values of C'R in a small range near 1. In fact for exponential
crossover variants when n goes to infinity p,, tends toward 0 if CR < 1 and to
1 only if CR=1.

4. Experimental parameter study

As the results in the previous sections suggest there are two main differences
between binomial and exponential crossover: (i) the same value of the crossover
rate lead to different values of the mutation probability; (ii) in the exponential
crossover the mutated components are consecutive while in the case of binomial
crossover the components to be mutated are randomly selected. The main aim
we followed in this experimental study was to see which of these two differences
has a larger impact on the DE behavior.

4.1. Previous work

Most of the experimental studies on the role of crossover in differential evo-
lution focus on the impact of the crossover rate on the algorithm behavior. First
results state that the most important DE control parameter is the scaling factor,
F, while the crossover rate, C'R, is useful only for fine tuning. Starting from
the suggestions of Storn and Price many of the first DE implementations used
values of CR near 0.9. The parameter study conducted in [7] illustrated the fact
that for some functions (e.g. Rastrigin) values of C'R less than 0.9 can lead to a
better behavior. Later, in [15] is stated an important relationship between the
properties of the objective function and the adequate values of CR: in the case
of separable functions small values of CR are adequate while for nonseparable
functions the best choice is to use larger values of CR.

Most of parameter studies use the binomial crossover variant. The studies of
exponential crossover are significantly fewer. In [28] the variant DE/rand/1/exp
is compared with particle swarm optimization and a simple evolutionary al-
gorithm for a large set of test functions. Despite the fact that the parame-
ters of DE have not been tuned (the used values were F' = 0.5, CR = 0.9
and the population size was 100) the DE/rand/1/exp variant proved to be



very competitive. On the other hand the results of a comparative study pre-
sented in [11] suggest that the binomial crossover is better than the exponen-
tial one. The study is thoroughly conducted by tuning the crossover rate for
each pair (DE variant,problem). However the set of analyzed CR values was
{0,0.1,0.2,...,0.8,0.9, 1}. If in the case of the binomial crossover these CR val-
ues lead to values of p,, which are uniformly distributed in [1/n,1], in the case
of exponential crossover this is not true (for instance in the case when n = 30
the corresponding values of p,, are only from [0.03,0.31]U{1}). Thus the worse
behavior of exponential crossover is not necessarily caused by its particularity
of mutating consecutive elements but it can be caused by just an inappropriate
choice of C'R.

For a fair comparative study between binomial and exponential crossover
one should use either a set of CR values which leads to uniformly distributed
values of p,, or the variant proposed in Algorithm 5, which is similar with the
binomial crossover with respect to the relationship between C'R and p,, but
mutates consecutive components as in exponential crossover.

4.2. Test functions and parameter setup

The comparative study we conducted aimed to analyze the sensitivity of DE
to crossover rate and mutation probability values. It also aimed to compar-
atively analyze the impact of mutating a sequence of consecutive components
and of arbitrary components.

In order to conduct this analysis we selected two multi-modal functions: a
separable (Rastrigin function) and a non-separable one (Griewank function).
These functions are defined as follows:

Rastrigin:
f1-512,5.12]" = R, f(21,...,2,) = 100+ 37, (z7 — 10 cos(27z;)))

Griewank:

f:[=600,600]" = R, f(z1,...,2) = 7055 Yoy 3 =TI, cos(z;/V/i)+1

For each function two variants were used: a shifted (for n = 100) and a
rotated one (for n = 50). For the shifted variant the minimum was randomly
generated in the decision variables domain while the rotated variants are taken
from the CEC 2005 test suite [22]. In all cases the optimal value is 0 (f(z*) = 0).
The comparative study involved the four crossover variants presented in
Section 3. In all cases the scaling factor is F' = 0.5 and the population size is
set to the problem size (m = n). The maximum number of function evaluations
is set to 500000 and the success threshold to € = 10~8. When the best element
in the population has a value less than € then we consider that the algorithm
succeeded in approximating the optimum. The success ratio (SR) is defined as
the ratio between the number of successful runs and the total number of runs.

4.8. Comparative results

Tables 2-7 present values averaged over 30 independent runs for the best
value (f*), the number of function evaluations (nfe) and the mutation prob-
ability (pm). At each generation the mutation probability is estimated as the



ratio of the number of mutated components and the number of components (n).
The value (p,,) is averaged over all generations and all runs.

Results in Tables 2 and 3 illustrate the importance of mutation probability
on the success of DE. For the separable Rastrigin function the best results are
obtained when at each step a small number of components are mutated. As we
can see if p,, < 0.03 all algorithms succeeded in finding the optimum, by using
almost the same number of generations. In the case of binomial crossover and
of the variant given by Algorithm 5 such values of p,, are obtained if CR is also
less than 0.03. On the other hand in the case of exponential crossover variants
given by Algorithms 3 and 4 (with p,, multiplied by CR(n —1)/(n + 1)+ 1 in
order to extend its range to [0,1)) the range of CR values for which p,, < 0.03
is significantly larger (approximately [0,0.6]). Since the success is obtained only
for a small number of mutated components (at most 3 in average) a significant
difference between the case when arbitrary placed components are mutated and
the case when a similar number of consecutive components are mutated cannot
be identified (see Table 2). On the other hand, the results in Tables 2 and 3
clearly illustrates the importance of p,, over C R and implicitly the fact that the
difference between binomial and exponential crossover is mainly determined by
the different relationship between the mutation probability and the crossover
rate.

CR Binomial crossover Algorithm 5

(%) (nfe) SR (pm) (f)  (nfe) SR (pm)
0 <e 361676 30/30 0.01 <e€ 362463 30/30 0.01
0.01 <e 406603 30/30 0.019 <e 362453 30/30 0.01

0.03 9-107° 500000 0/30 0.039 107° 500000 0/30 0.03
0.1 291.44 500000 0/30 0.109 388.3¢ 500000 0/30 0.1
0.3 634.64 500000 0/30 0.306 684.31 500000 0/30 0.3
0.5 799.69 500000 0/30 0.505 769.03 500000 0/30 0.5
0.7 843.63 500000 0/30 0.703 793.41 500000 0/30 0.7
0.9 550.93 500000 0/30 0.9 438.37 500000 0/30 0.9
0.95 71.30 500000 0/30 0.95 71.11 500000 0/30 0.95
0.99 72.19 500000 0/30 0.99 74.05 500000 0/30 0.99

Table 2: Shifted Rastrigin (n = 100, m = 100, F = 0.5, ¢ = 1078).

In the case of shifted Griewank function (Tables 4 and 5) there is a small
difference between the DE behavior in the case of binomial and exponential
crossover variants. The binomial crossover leads to best results for either small
or large values of py, (pm € [0,0.3]U[0.8,0.95]) which correspond with a similar
range of CR values. The exponential variants are successful for p,, < 0.8 which
correspond to values of CR less than 0.99. Thus as in the case of shifted
Rastrigin function the DE with exponential crossover (Algorithms 3 and 4)
has a larger range of C'R values for which it is successful.

The rotated versions are more difficult to solve. DE/rand/1 strategies are
not able to find the global optimum of the rotated Rastrigin function within
the specified number of function evaluations and the success ratio in the case



CR

Exponential crossover

Algorithm 4

(f7)  (nfe) SR (pm)  (f7) (nfe) SR {pm)
0 <e€ 361763 30/30 0.01 <e€ 362206 30/30 0.01
0.1 <e€ 380616 30/30 0.011 <e 365220 30/30 0.0111
0.3 <e€ 380616 30/30 0.014 <e 381010 30/30 0.014
0.5 <e€ 402756  30/30 0.02 <e€ 410766  30/30 0.023
0.7 <e€ 454013  30/30 0.033 3-10"% 500000 0/30 0.051
0.9 24.27 500000 0/30 0.099 100.53 500000 0/30 0.182
0.95 145.26 500000 0/30 0.198 231.57 500000 0/30 0.369
0.99 436.75 500000 0/30 0.634 456.18 500000 0/30 0.827

Table 3: Shifted Rastrigin (n = 100, m = 100, F = 0.5, ¢ = 1078).

CR Binomial crossover Algorithm 5

(f7)  (nfe) SR (pm) (") (nfe) SR (pm)
0 <e€ 380416 30/30 0.01 10°° 419923 28/30 0.01
0.1 <e€ 280086 30/30 0.108 <€ 295083 30/30 0.1
0.3 <e€ 415083 30/30 0.306 <e 410300 30/30 0.3
04 1077 500000 0/30 0.406 <e€ 438850 30/30 0.4
0.5 10~ 500000 0/30 0.504 <e 463726  30/30 0.5
0.6 0.0016 500000 0/30 0.603 <e€ 466200 30/30 0.6
0.7 107° 500000 0/30 0.702 <e 393703 30/30 0.7
0.8 <e€ 456566  30/30 0.802 3-107* 395626 29/30 0.8
0.9 <e€ 314824 30/30 0.901 0.0012 350616 26/30 0.9
0.95 <e 318521 30/30 0.95 0.0069 386793 22/30 0.95
0.99 0.0286 500000 0/30 0.99 0.0518 500000 0/30 0.99

Table 4: Shifted Griewank (n = 100, m = 100, F = 0.5, ¢ = 10~8).
CR Exponential crossover Algorithm 4
(%) (nfe) SR (pm) (f7) (nfe) SR {pm)

0.1 <e€ 360933 30/30 0.011 <e 358393 30/30 0.011
0.3 <e€ 341956  30/30 0.012 <€ 346550 30/30 0.014
0.5 <e€ 336633 30/30 0.019 <e 329446  30/30 0.023
0.7 <e€ 315196 30/30 0.033 <e 315146  30/30 0.051
0.9 <€ 316530 30/30 0.1 <e€ 359050 30/30 0.182
0.95 <e€ 359996 30/30 0.198 <e 438693 30/30 0.369
0.99 <e€ 408796 30/30 0.634 <e 392753 30/30 0.827
0.994 7-107* 399250 27/30 0.752 10~* 355948 29/30 0.89
0.997 0.0025 374210 24/30 0.865 107* 341916 29/30 0.943
0.999 0.017 500000 0/30 0.95 107* 324357 28/30 0.977

Table 5: Shifted Griewank (n = 100, m = 100, F = 0.5, ¢ = 10~ 8.



of rotated Griewank (Tables 6-7) is less than that corresponding to the shifted
version of the function (Tables 4-5). Because of the nonseparable character of
the function the success ratio is higher for higher values of p,,. Thus, unlike
in the case of separable Rastrigin function, the range of appropriate C R values
is smaller in the case of exponential crossover (Table 7) than in the case of
binomial crossover. On the other hand results in Table 6 suggest that, in this
case, the mutation of consecutive components (as in Algorithm 5) lead to slightly
better results than the mutation of arbitrary placed components (as in binomial
CroSSover).

CR Binomial crossover Algorithm 5
(f7) (nfe) SR (pm)  (f7) (nfe) SR (pm)
0 0.01 500000 0/30  0.02 0.007 500000 0/30  0.02

0.1 0.011 500000 0/30 0.11 0.0075 500000 0/30 0.099
0.2 0.002 500000 0/30 0.215 0.004 496220 3/30 0.2
0.3 2-1077 497065 6/30 0.31 5-107% 453552 22/30 0.3
0.5 1078 483345 22/30 0.509 4-107* 359978 27/30 0.5
0.7 9.-107* 317970 27/30 0.705 0.0012 398508 26/30 0.7
0.9 0.0086 366858 17/30 0.901 0.0077 366955 20/30 0.9
0.95 0.01 492686 8/30 0.95 0.01 460185 14/30 0.95
0.99 261 500000 0/30 0.99 0.111 500000 0/30 0.99

Table 6: Rotated Griewank (n = 50, m = 50, F = 0.5, ¢ = 1078).

CR Exponential crossover Algorithm 4

(%) (nfe) SR (pm)  (f7) (nfe) SR {pm)
0.1 0.0054 500000 0/30 0.022  0.0074 500000 0/30  0.022
0.3 0.0053 500000 0/30 0.028  0.0058 500000 0/30  0.029
0.5 0.0052 500000 0/30 0.04  0.0055 500000 0/30  0.046
0.7 0.0082 500000 0/30 0.066  0.0082 500000 0/30  0.102
0.8 0.0094 500000 0/30 0.099 3-107* 489055 16/30 0.166
0.9 0.001 478735  25/30 0.198 7-107* 346293 28/30 0.352
0.95 9-107* 320315 27/30 0.369 0.0031 322546  23/30 0.594
0.99  0.0087 458396 16/30 0.789 0.0096 414528 14/30  0.902
0.999 8.74 500000 0/30 0.975 0.0073 425000 15/30 0.98

Table 7: Rotated Griewank (n = 50, m = 50, F = 0.5, ¢ = 10~8).

5. Impact of the crossover type on the choice and adaptation of con-
trol parameters

The previous experiments were based on the same value of the scaling pa-
rameter F'. Since the control parameters in DE are interrelated one would
expect to have different appropriate values of F' for the same value of C R when
different types of crossover are used. The aim of this section is to analyze which
is the impact of the crossover type on the choice of F' and on the behavior of
(self)adaptive strategies.



5.1. Control parameters and population diversity

Since DE is prone to premature convergence one first issue in choosing the
control parameters of DE is to try to avoid such a situation. Starting from the
ideas that premature convergence is related with loss of diversity and that the
diversity is related with the population variance, in [30] is derived a theoreti-
cal relationship between the population variance, computed separately for each
component, and the control parameters after and before applying the variation
operators. More specifically, if Var(z) and Var(z) denotes the averaged variance
of the trial and current populations respectively then the following relationship
holds:

2pm D2
= (2p, F?— =22 4 0m o4 1
Var(z) = (2p o Tt ) Var(z) (15)

Based on this linear dependence between these two variances one can control
the impact of the mutation and crossover steps on the variance modification by
imposing that

2
Pm

1= 1
m-l- c (16)

2pm
W 2 — ZLm
m

where ¢ should be 1 if we are interested to keep the same value of the variance
or slightly larger than 1 in order to stimulate an increase of the diversity (for
instance ¢ = 1.05 means an increase of the population variance with 5% and
¢ = 1.1 means an increase with 10%). The result in [30] was obtained only in the
case of binomial crossover considering that p,, = CR . By replacing in eq. (16)
the value of p,, with the expression corresponding to different crossover variants
(as in Propositions 1-3), one obtains corresponding equations involving F,C R,m
and n. By solving these equations with respect to F' one can obtain lower
bounds for F' which allow avoiding premature convergence. The dependence of
such lower bounds of F' on the values of C'R for two values of the constant c is
illustrated in Figure 2. The differences between the value of F},;, in the case of
binomial and the exponential crossover variants suggest that for the same value
of CR € (0,1) the exponential crossover needs a larger value of F' in order to
induce the same effect on the population variance.

Attention should be also paid when using in combination with exponential
crossover an adaptive or self-adaptive variant of DE which was initially designed
for binomial crossover. For instance in the adaptive variant designed to avoid
premature convergence [31] the adaptation rules for F' and C'R should be mod-
ified according to eq. (15) and to the relationships between p,, and CR.

5.2. On adaptation of control parameters

The adaptive and self-adaptive variants of DE are based on exploring the
control parameters space using deterministic or random strategies. Since the
parameters which are currently adapted are F' and C'R and the behavior of DE
is in fact influenced by F' and p,, it follows that in the case when exponential
crossover is used the strategy used to explore the C'R space should take into
account the nonlinear relationship between p,, and CR. Let us analyze the
simple case of a dynamic CR as it is used for instance in [12]: CR(t + 1) =
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Figure 2: Lower bound for F' vs. CR for binomial crossover (dashed line), exponential
crossover (thick line) and crossover described in Algorithm 4 (normal line). Parameters:
m =50, n =50

0.95!CR(t) (where ¢ denotes the moment when the value of CR is changed).
For different crossover variants the impact of these changes on the value of p,,
is different. This is illustrated in Figure 3 where one can see that the decrease
of p,,, is quicker in the case of exponential crossover variants than in the case of
binomial crossover. The difference becomes more significant when the problem
size becomes larger. These remarks lead to the conclusion that such a decrease
scheme of C'R could be inappropriate in the case of exponential crossover since
it leads to a too fast decrease of the mutation probability.

pm
1.0¢

0.8} \

0.6 n=50

Figure 3: Evolution of p,,, when C'R is changed according to C R(t+1) = 0.95 C R(t). Variants:
binomial crossover (dashed line), classical exponential crossover (thick continuous line) and
the variant described in Algorithm 4 (normal continuous line). Parameters: C'R(0) = 0.99,
n =10 (left) and n = 50 (right).

Let us analyze now the case of a DE variant with parameter adaptation based
on generating values for CR uniformly distributed in [0, 1]. Such an approach
is similar with that used in the jDE self-adaptive algorithm proposed in [3].
As in all self-adaptive variants, in jJDE each individual is extended with some
components corresponding to the control parameters F and CR. Thus C'R; and
F; are the parameters corresponding to element i. At each generation the control



parameters can be randomly perturbed with a small probability (e.g. 0.1). For
instance each C'R; is replaced, with probability 0.1 with a value generated by a
uniform distribution on [0, 1] and remains unchanged (or is replaced with CR.,
the crossover rate corresponding to the best element in the current population)
with probability 0.9. Using a uniform distribution for new values of C'R ensures
a good exploration of the domain of p,, values ([1/n,1]) in the case of binomial
crossover but in the case of exponential crossover this is not necessarily true.
In this last case in order to have a uniform distribution of p,, on [1/n,1] the
crossover rate should have a non-uniform distribution.

Let us denote by fcr and fp,, the distribution probabilities of the random
variables corresponding to the crossover rate and mutation probability, respec-
tively. If we denote with ¢ the function which expresses the relationship between
CR and py, (pm = g(CR)) then

Fom W) = fer(g™ W) /9" (97 () (17)

If we want a uniform distribution of p,, on [1/n,1] then fpm( ) =n/(n— 1)
Thus the distribution probability of CR should be fer(z) = ¢'(z)n/(n—1). 1
the case of classical exponential crossover g(z) = (1 — a:”)/( (1 —z)) and the
distribution probability of C' R should be

fer(@) = ni 1 (n(ll_—m:)Q - fn—_;> (18)

with the corresponding cumulative distribution function

(1l — a1t

Forl) = D -

(19)

The random variable C'R having the cumulative distribution function given
by eq. (19) can be simulated by using the inverse cumulative distribution func-
tion method which needs a table of values of the inverse of Frg. In our simu-
lations we tabulated F 5 with the step h = 0.01 and we used these values to
simulate the non-uniform distribution of C'R.

Let us analyze now the impact of using a uniform and a transformed non-
uniform distribution on the behavior of a self-adaptive variant which uses a
strategy inspired from [3] for changing the values of individual crossover rates
corresponding to generation g:

with probability 0.1

Uj
CRi(g) = { CR.(g—1) with probability 0.9

(20)
where u; is a random value generated at each generation and for each population
element by using an uniform distribution on [0, 1] or the distribution described
in eq. (19). CR.(g —1) is the crossover rate used in obtaining the best element
of the previous generation. Two sets of experiments were conducted: one using
a fixed value for F' (Tables 9 and 8) and one based on adapting the scaling
parameters F} such that the variance of the population is kept at almost the



same level (Table 10). The parameter Ff (g9), used to generate the component j
of the mutant vector corresponding to the element i at generation g is computed,
after CR;(g) was adjusted, by using the following equation, derived by solving
eq. (16):

Fg(g>:\/0j7—1+l_w a1

2pm(isg)  m  2m
Var(a? (g—2))
Var(zi(g—1))
to the current value of the crossover rate (given by eq. (4) in the case of binomial
crossover and by eq. (7) in the case of exponential crossover). The choice of ¢;
aims to ensure that the mutation and crossover operators applied at generation
g compensate the effect of DE operators had on the population variance at
generation g — 1.

The simulation results are presented in Tables 8 - 10 where for each test
function and each crossover variant are presented the average and standard
deviation values for the best value in the last generation (f*) and the number
of function evaluations (nfe). The number of successful runs out of 30 (S) and
the mutation probability (p,,) estimated based on the last generation are also
presented. The analyzed crossover variants are: the classical binomial crossover
and the classical exponential crossover combined with a uniform distribution of
CR and with the non-uniform distribution given by eq. (18).

The results in Table 8 suggests that for functions like shifted Griewank
the behavior of DE is not very sensitive to the choice of the crossover type
or distributions involved in the perturbation of the crossover rate. On the
other hand for the rotated variant of the Griewank function using an uniform
distribution for C'R seems to be less effective, with respect to the number of
successful runs, than using a non-uniform distribution (as in eq. (18)). On the
other hand the results obtained in the case of the uniform distribution of CR are
less dispersed than in the case of the non-uniform distribution. The estimated
values of the mutation probability suggest that in the case of the rotated variant
higher values of the p,, (and implicitly of CR) are favored.

where ¢; = and py, (i, g) is the mutation probability corresponding

Crossover Shifted Griewank fct.(n = 100)  Rotated Griewank fct. (n = 50)

type () (nfe) S Apm) (f) (nfe) S (pm)
(stdev)  (stdev) (stdev) (stdev)

Binomial <e 342920 30 0.209 6-10-T 397688 27 0.287
(10719)  (22845) (0.0024)  (48241)

Exponential <e 331510 30 0.056 107° 500000 0  0.095

(uniform) (1071%)  (7327) (107%) (0)

Exponential <e 363593 30 0.367 0.0043 393525 20 0.495

(non-uniform)  (1071%)  (16998) (0.0065)  (77597)

Table 8: Influence of the crossover type and of the distribution of CR on the behavior of an
adaptive DE similar with the jDE algorithm [3] (m = n, FF = 0.5, ¢ = 10~®). Test functions:
shifted and rotated Griewank.



A different situation arises in the case of the Rastrigin function (Table 9). For
the separable variant, the exponential crossover with uniform distribution of CR
behaves better because it is biased toward small values of p;,,. This is no more
true in the rotated case when the function is not separable. None of the variants
were able to approach the global optimum of the rotated Rastrigin function.
This is in accordance with the results presented in [23] where is also stated
that the classical DE/rand/1/* algorithms cannot deal with high nonseparable
functions. The results in Tables 8 and 9 were obtained for a fixed value of
the scaling factor (F = 0.5). A slight improvement, except for the exponential
crossover with uniformly distributed C'R, is obtained by using individual scaling
factors and adapting them according to eq. (21) (see Table 10). None of the
variants proved to be consistently better than the other ones.

Crossover Shifted Rastrigin fct. (n = 100) Rotated Rastrigin fct. (n = 50)

type () (nfe) S (pm) (f7) (nfe) S (pm)
(stdev)  (stdev) (stdev) (stdev)

Binomial 59.84 489750 5 0.148 177.72 500000 O 0.098
(93.54)  (30023) (70.12)  (0)

Exponential <e 401066 30 0.046 269.65 500000 O 0.040

(uniform) (1071%)  (21536) (53.33) (0)

Exponential 41.47 497426 3 0.332 196.29 500000 O 0.203

(non-uniform) (63.39)  (8145) (56.35)  (0)

Table 9: Influence of the crossover type and of the distribution of CR on the behavior of an
adaptive DE similar with the jDE algorithm [3] (m = n, F = 0.5, ¢ = 10~8). Test functions:
shifted and rotated Rastrigin.

Crossover Shifted Rastrigin fct. (n = 100) Rotated Rastrigin fct. (n = 50)

type () (nfe) S (pm) (") (nfe) S (pm)
(stdev) (stdev) (stdev) (stdev)

Binomial 1.028 405470 16 0.550  99.044 500000 0O 0.254
(1.77)  (91634) (51.06)  (0)

Exponential 0.165 276510 26 0.157  209.86 500000 O 0.038

(uniform) (0.451) (87813) (6899)  (0)

Exponential 1.79 497090 1 0.654 130.73 500000 O 0.705

(non-uniform)  (3.72) (15670) (27.87) (0)

Table 10: Influence of the crossover type and of the distribution of CR on the behavior of
an adaptive DE with randomly perturbed CR and F' chosen according to eq. 21(m = n,
€ =10"8). Test functions: shifted and rotated Rastrigin.

6. Conclusions

Since the DE crossover operator constructs the trial vector from the current
and mutant vectors it determines how many and which components are mu-
tated. The number of components to be mutated, and implicitly the mutation



probability, is influenced by the crossover rate, CR. The selection of compo-
nents to be mutated is based on a distribution probability which is the binomial
one (in the case of binomial crossover) and the truncated geometric one (in the
case of exponential crossover).

These different distribution probabilities lead to a different dependence be-
tween the mutation probability, p,, and the crossover rate, CR. In the case
of binomial crossover this dependence is linear while in the case of exponential
crossover it is nonlinear. Thus for the same value of C'R the percent of mutated
components is different for the two crossover variants.

As numerical results suggest the difference between the behavior of binomial
and exponential crossover is more influenced by the different impact of CR on
pm than by the different strategies of selecting components from the mutant
vector.

For the same value of CR the mutation probability is larger in the case
of binomial crossover than in the case of exponential one, the difference being
larger as the problem size, n, is larger. In the case of exponential crossover there
is a small range of C'R values (usually [0.9, 1]) to which the DE is sensitive. This
could explain the rule of thumb derived for the original variant of DE [20] which
was based on the exponential crossover: ” use values of CR in the range [0.9,1]”.
It also agrees with experimentally derived remarks as: ”larger CR is required
for exponential crossover to generate crossover segment at a suitable size and
lower CR is useful for binomial crossover to perform robust convergence” [8].

Moreover, in the case of exponential crossover, when n is large the range of
CR values for which p,, is significant becomes very narrow. In fact when n goes
to infinity p,, tends to O for all values of C R except for the value 1 and tends to
1 just for CR = 1. Thus for high-dimensional problems the use of exponential
crossover can generate difficulties in choosing proper values for C'R.

Besides the classical implementation of exponential crossover other imple-
mentation variants based on similar distribution probabilities but using fewer
calls of random functions were proposed and numerically analyzed. For the
analyzed test functions the proposed crossover variants (Algorithms 4 and 5)
behaves similarly (slightly better in the case of Griewank functions) with the
classical exponential crossover.

Since the parameters CR and F' are interrelated it is expected that for the
same value of C'R the adequate value of F' can be different for different crossover
variants. Indeed, as results in Section 5.1. suggest, for the same value of CR
the exponential variant needs a larger value for the scaling parameter, F', in
order to avoid premature convergence.

On the other hand, when tuning the value of CR the use of a uniform
discretization of [0,1] as in [11] is appropriate for binomial crossover but not
necessarily appropriate for exponential crossover (since exponential DE is more
sensitive to values of C'R between (0.9, 1] than to values between (0,0.9]). Sim-
ilarly using a uniformly random perturbation of C'R as in self-adaptive jDE
algorithm proposed in [3] can be adequate when binomial crossover is used but
not necessarily also in the case of exponential crossover.

The aim of this paper was rather to analyze the impact of the crossover



type on the DE behavior and on the choice of adequate control parameters than
to prove the superiority of one crossover variant over the other one. Further
analysis should be conducted in order to identify a class of problems where
one of the crossover types is leading to the best results. The main conclusion
is that when using exponential crossover one have to take into account the
particular dependence between C'R and p,,, and its impact on parameter tuning
or adaptation.
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