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Abstract – The communication between subpopulations in 
a distributed evolutionary algorithm is an important issue 
since it influences the algorithm effectiveness in solving 
the optimization problem and the efficiency of the parallel 
implementation. Choosing the adequate communication 
strategy depends on various factors, thus by comparing 
different strategies one can collect knowledge on how to 
design an effective approach. The aim of this paper is to 
compare a set of communication strategies both with 
respect to their effectiveness in approximating the Pareto 
set of a multi-objective optimization problem and with 
respect to the efficiency of a parallel implementation. 
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I. INTRODUCTION 
 
Many optimization problems in engineering are of multi-
objective type, meaning that one have to optimize 
simultaneously several, usually conflicting, objectives. 
Dealing with multiple conflicting criteria leads to the 
necessity of accepting compromise solutions. In 
mathematical programming such compromise solutions are 
called Pareto optimal solutions.  The notion of Pareto 
optimality is defined based on the concept of non-
dominance. In the case of a minimization problem a vector 
of objective values is considered to be non-dominated if  
does not exist another vector having all components 
smaller than the corresponding components of the first 
vector and at least one component strictly smaller. The aim 
of multi-objective optimization methods is to find a set of 
reciprocally non-dominated vectors, called Pareto front.  
The corresponding set of decision vectors is called Pareto 
optimal set. 
 
Evolutionary algorithms (EA) proved to be appropriate 
tools in approximating the Pareto optimal set. In the last 
decade dozens of evolutionary algorithms for multi-
objective optimization (usually called multi-objective 

evolutionary algorithms - MOEAs) have been proposed 
([3], an extensive list of references can be found at 
http://www.lania.mx/~ccoello/).  One of the main problems 
of evolutionary approaches for multi-objective 
optimization is the computational cost. The main cause of 
the high computational cost is the fact that for difficult 
problems there is necessary to work with large populations 
which lead to a large number of objective functions 
evaluations. Besides the efforts in developing evolutionary 
algorithms with a better convergence rate, another way to 
reduce the computational cost is to use the benefits of 
parallel and/or distributed implementations. Parallel 
implementations of evolutionary algorithms have been first 
developed for single objective optimization [2].  Later they 
have been applied also for multi-objective optimization. 
However there are fewer studies concerning parallel and 
distributed MOEAs than in the case of single objective 
case. 
 
There are three main parallelization models for 
evolutionary algorithms: master-slave, island based and 
cellular [2].  The most flexible is the island-based model 
(also called distributed model). In this parallelization 
model,  the population is divided in several communicating 
subpopulations, an independent EA being executed in each 
subpopulation. The main advantage of this approach is its 
flexibility and adequacy for heterogeneous networks. The 
main disadvantage is that by dividing the population in 
subpopulations the explorative power is reduced and the 
approximation of the Pareto set could be poorer than in the 
case of a single large population. While in the case of 
single objective optimization by using the island model one 
can improve the effectiveness of the algorithm even in the 
case of sequential implementations, this is not always true 
for multi-objective problems. 
 
There are at least two questions which should be answered 
when a distributed multi-objective evolutionary algorithm 
is designed:  (i) how to assign to each subpopulation a part 
of the search space? (ii) what kind of information should be 
transferred between subpopulations and how should be 
realized such a transfer? 
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In the last years different distributed MOEA have been 
proposed and studied [1,5,6,7,10,11].  These studies 
concern mainly with different strategies of dividing the 
entire population in subpopulations and less on the 
communication strategies between subpopulations. Hence 
there does not exist a systematic comparative study of the 
influence of different communication strategies on the 
effectiveness and efficiency of distributed MOEAs. The 
aim of this paper is to present the results of such a 
comparison.  
   
The paper is organized as follows. In section II is presented 
a summary of some distributed MOEAs with an emphasis 
on the particularities of their communication strategies. An 
analysis of four communication strategies is presented in 
section III. The influence of the communication on the 
effectiveness and on the efficiency of distributed MOEAs 
is illustrated in section IV through some numerical 
experiments both in the case of sequential and in the case 
of parallel implementation. 
 

II. DISTRIBUTED EVOLUTIONARY ALGORITHMS 
FOR MULTI-OBJECTIVE OPTIMIZATION 

 
A. Distributed Approaches of MOEAs 
 
A distributed MOEA is based on the idea of dividing the 
population in some subpopulations.  On each subpopulation 
an independent evolutionary algorithm is applied for a 
given number of generations, then a communication 
process is started. The distributed approach can be 
homogeneous (characterized by the fact that the same 
algorithm is applied on each subpopulation) or 
heterogeneous (the algorithms applied to subpopulations 
differ at least with respect to their parameters). Various 
distributed MOEAs differ with respect to one of the 
following elements: (i) the MOEA applied at 
subpopulations level; (ii) the subpopulations structure and 
the criteria of dividing the population in subpopulations; 
(iii) the communication process between subpopulations.  
 
Most distributed MOEAs proposed in the last years are 
based on the NSGA II algorithm [4].  An explanation of 
this choice is the fact that NSGA II does not use an archive 
making easier the distribution of the evolutionary 
algorithm.  
 
 The process of dividing a population in subpopulations can 
be guided or not. In a non-guided approach the population 
is rather arbitrary divided in subpopulations and each 
subpopulation tries to approximate the entire Pareto front. 
In guided approaches each subpopulation is focused on a 
part of the search space. The criterion used in the division 
process is based either on the decision variable [10] or on 
the objective values [1, 5, 6].  The subpopulations are 
reorganized either explicitly (by periodically gathering all 
subpopulations and by dividing the entire set in new 
subpopulations [6, 10]) or implicitly by periodical 

exchange of information between subpopulations 
[1,5,7,11]. 
 
B. Communication strategies 
 
The exchange of information (elements of the population 
and/or control information) between subpopulations can be 
realized in one of the following ways: (i) by migration; (ii)  
by pollination; (iii) by using a shared archive. 
 
The communication by migration consists in moving one 
element from a subpopulation to another subpopulation. If 
the subpopulations are of fixed size then in the place of the 
migrating element a new element is introduced (either 
selected from another subpopulation or even randomly 
generated).  In the following, by random migration we shall 
refer the process of exchanging two randomly selected 
elements. The communication by pollination consists in 
copying one element from one population to another one. 
Each communication strategy is characterized by a 
communication topology, a selection scheme, a 
replacement scheme and some parameters which control 
the ratio of elements which are transferred from one 
subpopulation to another one.   
 
The communication topology defines the relationship 
between subpopulations. There are three main topologies 
used in distributed MOEA: the fully connected  topology (a 
subpopulation Si can communicate with any other 
subpopulation Sj), the ring topology (a subpopulation Si can 
communicate only with its neighbors Si-1 and Si+1, the 
hierarchical topology (the subpopulations are organized in 
a hierarchy and only subpopulations which are neighbors in 
this hierarchy can communicate) [7]. In the case of a fully 
connected topology the destination subpopulation can be 
chosen randomly [11] or in a systematic manner [1]. 
 
The selection scheme refers to the mechanism of choosing 
the element which will be transferred to another 
subpopulation. The selection criterion can be based on the 
properties of the subpopulation elements. The most used 
schemes are: the random scheme (the outgoing element is 
randomly selected) and the elitist scheme (is selected one 
of the best elements). In the case of multi-objective 
optimization the elitist selection means selecting one of the 
non-dominated elements. 
 
The replacement scheme refers to the mechanism of 
choosing the element to be replaced in the target 
subpopulation.  As in the case of selection the random and 
the elitist approaches are the most used. In the random 
version the element to be replaced is randomly selected 
while in the elitist case one of the worst elements is chosen.  
In the multi-objective case worst means dominated (in the 
case of MOEAs based on non-dominating sorting – as in 
NSGAII – elements having the lowest non-domination  
rank are chosen). 
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TABLE 1. Classification of distributed MOEAs with respect to the communication process 
  
Distributed 
MOEA 

Communication  
type 

Topology Selection Replacement Frequency Ratio 

DRMOGA [6] all subpopulations are gathered and  reorganized by sorting them with respect to the 
objective functions 

5 1 

Guided 
distribution [5] 

pollination fully connected 
(systematic) 

elitist (non-dominated 
elements) 

random 5  0.3 

APDE [11] migration fully connected 
(random) 

random random 25 0.5 

Cone separation 
[1] 

pollination dynamically  
constrained 

constraints  
violation 

new elements 
are added 

1 variable 

MRMOGA [7] pollination  hierarchical elitist from an  archive worst elements not 
specified 

not 
specified 

Clustering 
DMOEA [10] 

all subpopulations are gathered and  reorganized by  applying clustering in  
the decision space 

1 1 

 
There are two main communication parameters which 
control the effectiveness of the process: the frequency and 
the communication ratio. The frequency specifies the 
number of generations between two consecutive 
communication steps. The communication ratio refers to 
the ratio of elements which are involved in the 
communication process.  Large communication frequencies 
and ratios lead to a high communication cost. 
 
A summary of the communication particularities of some 
distributed MOEAs is presented in Table 1. 
 
III. ANALYSIS OF COMMUNICATION STRATEGIES 

 
In this section we shall analyze the properties of four 
general communication strategies obtained by combining 
two topologies (random and ring topologies) with two 
communication mechanisms (random migration and elitist 
pollination).  The communication mechanisms have an 
influence both on the evolution process and on the 
communication costs.   
It is easy to see that migration does not change the global 
population but only the distribution of elements in 
subpopulations while the pollination usually decreases the 
global population variance but increases the averaged 
global fitness. This means that migration preserves the 
global population diversity and possible increases the 
diversity of some subpopulations. On the other hand the 
pollination could accelerate the convergence.  The 
communication topology does not influence the population 
diversity. On the other hand it can influence the 
communication costs in the case of parallel 
implementations. In order to analyze the influence of the 
communication strategy on the communication cost we 
shall estimate the average number of messages to be 
transferred between subpopulations.  
 
Let us consider a set of s subpopulations S1, S2, …, Ss of 
sizes m1, m2, …, ms. Each element of a subpopulation can 
be involved in a communication process with a probability   
 
 

 
pm called migration probability (even in the case of a 
pollination process). Let Ni be the average number of 
messages a population Si will send during a communication 
process.  
 
A.  Random migration and random topology.   
 
In this case there are two types of messages which a 
subpopulation send: messages containing the migrants and 
messages containing the elements which are sent in the 
place of immigrants.  Since each element of a 
subpopulation Si can be selected as migrant with 
probability pm the average number of first type messages is 
pmmi.  On the other hand the subpopulation Si can be 
selected with probability 1/(s-1) to be the destination 
population of migrants from any other subpopulation, Sj. 
Thus the average number of messages sent by each 
subpopulation Si  is 
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If all subpopulations have the same size, m, then Ni=2mpm. 
Since during the migration, n decision variables and r 
objective values are sent, each message consists of (n+r) 
real values.  The average number of messages sent by a 
subpopulation Si to another subpopulation Sj is  
 

)1/()1/( −+−=→ smpsmpN jmimji                              (2) 
 
It should be noted that all messages prepared at a given 
migration stage to be sent to a given subpopulation could 
be grouped in one longer message. However the first term 
in eq. (2) refers to the migrants sent to population Sj and the 
second term refers to the elements sent to replace the 
immigrants from Sj. Since these two types of messages 
should be sent in two different stages of the migration 
process they cannot be grouped in only one message.  Thus 
in this case each subpopulation sent at least two distinct 
messages. 
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B.  Random migration and ring topology 
 
In the case of ring topology a subpopulation Si 
communicates only with two neighboring subpopulations: 
it sends migrants to Si+1 and replacing elements to Si-1 (all 
operations with indices are modulo s). The average number 
of messages sent by Si is Ni=(mi+mi-1)pm. When all 
subpopulations have the same size one obtains the same 
value as in the case of random topology. The difference 
appears in the average number of messages sent by Si to Sj 
which is 

1 if  
1 if  
1|| if   0
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In the parallel implementation all messages which should 
be transferred from one population to another one can be 
grouped in only one package thus the process 
corresponding to a subpopulation Si will send two 
packages: one of length mipm(n+r) to the process  
corresponding to Si+1 and one of length mi-1pm(n+r) to the 
process corresponding to Si-1. 
 
C.  Elitist pollination and random topology 
 
In the case of pollination, each subpopulation will send 
only one type of messages: those containing non-
dominated elements.  The number of these messages 
depends on the number of non-dominated elements in the 
subpopulation. If ki is the number of non-dominated 
elements in Si then the average number of messages sent by 
Si is Ni=kipm and it satisfies 

imim mpNp ≤≤                                                              (4) 
being clearly less than the number of messages sent in the 
migration case.  The average number of messages 
transferred from a population Si to another population Sj is 

)1/( −=→ skpN imji                       (5) 
 
D.  Elitist pollination and ring topology 
 
The only difference between this variant and the previous 
one is the fact that only neighboring subpopulations 
communicate and the average number of messages sent by 
Si to Sj is 

1 if  
1 if  
1|| if   0

11 −=
+=
≠−

⎪
⎩

⎪
⎨

⎧

≤
≤=

−−

→

ij
ij
ji

pmpk
pmpkN

mimi

mimiji                         (6) 

 
The average number of packed messages (groups of 
messages prepared at one migration stage) transferred 
between the processes corresponding to s subpopulations is 
summarized in Table 2 for all four cases analyzed above. A 
difference between migration and pollination which should 
be emphasized is the fact that in migration the 
subpopulations have to wait for replacements for their 
migrants while in the pollination case, once the 

subpopulation sent the migrants and received the incoming 
elements it can continue its evolution. 
 
TABLE 2. Total number of packed messages transferred between 
the processes corresponding to s subpopulations 
 
Migration &  
random (A) 

Migration 
& ring (B) 

Pollination & 
random (C) 

Pollination 
& ring (D) 

)1(22 −≤≤ ssNs
 

sN 2=  )1( −≤≤ ssNs
 

sN =  

 
IV. NUMERICAL RESULTS 

 
In order to analyze the influence of the communication 
strategy on the effectiveness of a distributed MOEA and on 
the efficiency of the parallel implementation we conducted 
numerical experiments on some test functions.  
 
A.  Experimental setup 
 
The MOEA algorithm which we used is an extension for 
multi-objective optimization of the differential evolution 
algorithm [8]. Its basic idea is to use the crossover operator 
specific to differential evolution [9] and the selection 
principle of NSGA II [4]: the elements of the parent and 
offspring populations are organized in non-domination 
layers and selected based on their position in these layers. 
The distributed variant consists on dividing the population 
in subpopulations of identical size and in applying the 
algorithm on each subpopulation. After a given number of 
generations a communication process is activated. All four 
communication strategies analyzed in the previous section 
have been implemented.  For tests we chose two problems 
from the test suite introduced in [12]:  ZDT4 (a deceptive 
problem with multiple local Pareto fronts) and ZDT6 (a 
problem with non-uniformly distributed Pareto front). In 
both cases there are two objective functions which should 
be minimized and n=10 decision variables. The true Pareto 
fronts are:  ]}1,0[),1,{( ∈− xxx for ZDT4 and 

 for ZDT6, respectively. ]}1,0[),1,{( 2 ∈− xxx
 
B.  Comparative results on effectiveness  
 
In order to compare the quality of results produced by the 
four variants of communication between subpopulations we 
used two performance measures: a unary one (generational 
distance – GD) and a binary one (two set coverage – CS) 
[3]. The generational distance measures how far is the 
approximated Pareto front from the true Pareto front and it 
is defined as 
 

m

TFFd
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m

i i
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1
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=
∑ =

       (7) 

where (F1,…Fm) is the approximation of the Pareto front, 
TF is the true Pareto front  and d is a distance from a point 
to a set.  The two set coverage measure is used to compare 
two approximations of the Pareto front. If  F’ and F” are 
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two approximations of the Pareto front then the two set 
coverage measure of F’ and F” is defined as 
 

)"(
}"'..,'' |""{)",'(

Fcard
yytsFyexistsFycardFFCS f∈∈

=  

Thus CS(F’,F”) is the ratio of elements in F” which are 
dominated by elements in F’. Values of CS(F’,F”) near 1 
suggest that F’ is a significantly better approximation than 
F”. 
        The parameters used in implementation were:  s=4 
subpopulations each one having   m=50 elements, a 
communication frequency of 50 generations and a 
migration probability of 0.1. The parameters corresponding 
to the MOEA applied to each subpopulation were chosen 
as in [8]: p=F=0.3. In Table 3 and 4 are presented 
comparative results for all communication strategies:  
random migration and random topology (A), random 
migration and ring topology (B), elitist pollination and 
random topology (C) and elitist pollination and ring 
topology (D). The values on the diagonals of the tables 
correspond to the generational distance (GD) while the 
other values correspond to two set coverage measures.  All 
values are averages obtained through 10 independent runs 
of the algorithms (in fact for the two set coverage measure 
the averages are over 10*10 values obtained by combining 
10 results for one strategy with other 10 results the other 
strategy). 
 
TABLE 3.  Results for ZDT6 
 

GD (A) (B) (C) (D) 
(A) 0.00309 0.17811 0.94596 0.89433 
(B) 0.52265 0.00272 0.95598 0.86567 
(C) 0.00373 0.00033 0.02293 0.87702 
(D) 0 0 0.01191 0.05899 

 
TABLE 4.  Results for ZDT4 
 

GD (A) (B) (C) (D) 
(A) 0.00013 0.05145 0.44864 0.65358 
(B) 0.00390 0.00005 0.25025 0.52249 
(C) 0.00280 0.00035 0.01063 0.69227 
(D) 0.00120 0.00015 0.14222 0.10372 

 
The GD values suggest that for both test problems the 
variant using random migration leads to a better 
approximation than the variant based on elitist pollination. 
The values of two set coverage measure also show that the 
random migration lead to better results than the elitist 
pollination. In the case of ZDT6 test problem more than 
90% of the Pareto front approximated by the variant with 
elitist pollination is dominated by the Pareto front 
approximated with the variant based on random migration.  
The difference between the approximations of Pareto front 
is also illustrated in fig. 1.  In the case of ZDT4 the 
superiority of random migration is not so obvious. 
However the number of situations when a poor 
approximation is obtained is larger in the case of elitist 
pollination than in the case of random migration (see fig. 
2).  Concerning the difference between random topology 

and ring topology the experiments did not prove a clear 
superiority of one strategy over the other. However when is 
combined with random migration the ring topology seems 
to behave better than the random topology while when it is 
combined with elitist pollination it behaves worse. A 
possible explanation of this behavior is that the random 
migration ensures the diversity of population thus is no 
need for a random topology while in the case of elitist 
pollination the random topology brings the variability 
which is not ensured by pollination.  
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Fig. 1. Approximations of the true Pareto front for the test problem ZDT6 
(continuous line):  random migration & random topology (filled points) 

vs. elitist pollination & random topology (empty points) 
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Fig. 2. Approximations of the true Pareto front for the test problem ZDT4 
(continuous line):  random migration & ring topology (filled points) vs. 

elitist pollination & ring topology(empty points) 
 
C. Comparative results on communication costs 
 
In order to analyze the influence of the communication 
strategy on the efficiency of a parallel implementation 
(based on PVM communication library) we conducted 
some tests on a cluster consisting of 8 nodes (Intel P4, 
3GHz, 1 Gb RAM) connected at 100Mbps.  Let T(p,s) be 
the running time corresponding to the case when the 
population is divided in s subpopulations and these 
subpopulations are assigned to p processors. Each 
processor will execute the evolutionary algorithm 
corresponding to s/p subpopulations.  The influence of the 
number of processors and of the communication strategy 
on the speedup ratio T(1,s)/T(p,s) is illustrated in fig.3 (for 
s=24 subpopulations, each one of 10 elements, a 
communication frequency of 5 generations, 100 communi- 



 

6 

 
Fig. 3.  Dependence of  T(1,s)/T(p,s) on the number of processors p for 

different communication strategies ( ) ps ≥
 
cation steps and a migration probability equal to 0.1). No 
significant differences are between different 
communication strategies even if the number of transferred 
messages is higher in the case of random migration than in 
the case of elitist pollination. These can be explained by the 
fact that elitist pollination involves some extra non-
domination analysis (in order to reorganize the non-
domination layers after the receipt of a new element). Fig. 
4 illustrates similar results but with respect to the ratio 
T(1,1)/T(p,p). In this case the number of subpopulations is 
identical with the number of processors, each processor 
executing only one algorithm. The superlinear behavior can 
be explained by the fact that the global population size is 
constant (240 elements). This means that when there are 
few subpopulations they have larger sizes than in the case 
of many subpopulations.  Since the non-domination sorting 
step is of quadratic complexity with respect to the 
subpopulation size this leads to higher costs in the case of 
fewer (and implicitly larger) subpopulations. 
 

V.  CONCLUSIONS 
 

With respect to the ability of approximating the Pareto 
front, the communication based on random migration 
seems to be superior to that based on elitist pollination.  
With respect to the communication costs the elitist 
pollination and the ring topology are superior to their 
random counterparts. However the comparative study 
based on a parallel implementation suggests that the 
efficiency gain of the elitist pollination with respect to 
random migration is not significant. Thus, even if random 
migration is rarely used in current distributed MOEAs it 
can be considered as a viable alternative for 
communication between subpopulations. 
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