
Distributed Systems – Techs

12. Ubiquitous* computing

yoo-bik-wi-tuh s, omnipresent

Ubicomp definition

 Term coined by Mark Weiser in 1991
 Vision: world of ubiquitous computers that become invisible by being

embedded into the physical environment with the goal of supporting people
unobtrusively in fulfilling their tasks

 Named also pervasive computing

 Example for an application of ubicomp: a smart room allocation syst.
 chairs are able to sense their occupancy status and use this information to

automatically derive the occupancy level of the room, which is then displayed
at the electronic door plate and by a central “room finder” in the hallway.

 Technological features:
 consists of numerous, highly specialized wireless computing devices

embedded into our physical environment

 devices can perceive & control certain params.of their physical environment
& can communicate with each other.

 devices use ergonomic, intuitive, & unobtrusive ways of interacting with
people.

Why now and what?

 Recent technological advances supporting ubicomp in
1. processors,

2. storage,

3. wireless communication,

4. sensors and actuators,

5. energy supply,
 Construction of energy-efficient technologies is of utmost importance (devices for

ubicomp often are wireless).

6. development of new materials
 New materials (e.g. flexible displays, film batteries) allow the construction of

devices with unconventional forms.

 Trend towards “more, smaller, cheaper, less energy” will enable the
construction of future ubicomp systems.

 A computer science perspective:
 new algorithms, protocols & architectures needed to

 manage & control the enormous amount of networked computing devices &

 make sense out of the huge amount of data collected by sensor-equipped devices

Middleware challenges

 Constrained Resources

 Network Dynamics

 Scale of Deployment

 Real-world Integration

 Collection, Processing and Storage of

Sensory Data

 Integration with Background Infrastructures

Constrained Resources (1/2)

 To allow an unobtrusive integration into physical
objects and environments -> devices often have
to be wireless and must meet certain size
constraints.

 Limited size and energy => resources like
computing power, memory size, communication
bandwidth, and range are rather limited.

 Example: a matchbox-sized sensing device
developed at UC Berkeley, MICA mote

 8-bit processor with 8 MIPS,

 8 kilobytes of RAM,

 128 kilobytes of program memory

 a communication bandwidth of 40 kilobits per
second over a range of up to 30 meters

 runs for weeks or months on a pair of AA
batteries.

Constrained Resources (2/2)

 The limited resources must be shared among various
applications executing in the network and the middleware
services itself => ubicomp middleware services must be
lightweight in order to fit into the constrained resources

 Ubicomp middleware should provide mechanisms that help to
minimize the amount of resources that are needed to accomplish
a certain application task.

 Approach: dynamically adapt the performance of hardware,
algorithms, and protocols to the varying needs of the application.

 Examples:

 adaptive fidelity algorithms that can be tuned to trade off output
fidelity for resource usage.

 exploit application knowledge to decide when to switch off the radio
for energy efficiency reasons.

Network dynamics
 Ubicom appl. requires the collaboration of spatially distributed devices

1. devices in an ubicomp appl. tend to be highly specialized, e.g.
 some sense environmental parameters,

 some extract information from the collected sensory data,

 some interact with human users.

2. many applications require sensory input from many spatially distributed devices
(e.g. occupancy level of a room).

3. the constrained resources of individual devices often require collaboration for
solving complex tasks

 limited communication range of ubicomp devices =>
1. ubicomp networks not ~ mobile phone networks, where devices communicate

directly with a base station

2. ubicomp devices form ad hoc networks:
 devices act as routers, forwarding messages for their neighbors over multiple hops.

 powerful devices might act as gateways that connect ad hoc network patches of
ubicomp devices to an existing background infrastructure

 the topology is subject to frequent changes due to device mobility, environmental
obstructions resulting in

 communication failures (e.g., a truck driving by),

 hardware failures (e.g., depleted batteries, stepping on a device).

Handle with the network dynamicity

 information hoarding: downloads data during online
phases that might be needed later on

 data-centric communication: distributed components
are identified solely based on the function or data
they provide
 e.g., “some device in my vicinity that can measure

temperature”.

 advantage: tolerate devices going offline by transparently
switching over to a device with equivalent functionality

 lease concept: where resources allocated for remote
peers are associated with a lease, which has to be
renewed regularly.
 If the lease expires due to a missing renewal, the system

can automatically reclaim the associated resources.

Scale of Deployment

 Example: Smart Dust – concept introduced in 2001
 millions of dust-grain-sized devices (motes) would be deployed in the environment

in order to monitor various environmental phenomena.

 A single device consists of sensors, a processor, wireless communication, energy
supply.

 devices are small enough, e.g.
 stay suspended in air, for example, to monitor weather phenomena or air quality.

 mixed into paint in order to coat buildings, which would allow monitoring the effects of
seismic activity on the structural integrity of the buildings.

 Impossible to manually configure, maintain, fix, or upgrade individual devices due
to their huge number.

 Impossible to assign unique identifiers (e.g., similar to the unique MAC address) to
individual nodes due to the involved production overhead.

 Totally symmetric situation (all devices are identical initially), the collection of
devices must self-configure in order to achieve an operational state (e.g., set up a
network topology, assign tasks to devices, collaboratively merge and evaluate
collected data).

 The network should be self-maintaining in order to fix node failures without manual
intervention.

 => Ubicomp middleware should provide support mechanisms for self-
configuration and self-maintenance.

Real-world integration

 By definition, ubiquitous computing devices are embedded into the physical
environment, typically capturing data about their environment using
attached sensors
 a close integration of ubicomp systems with the real world

 physical time and location play a crucial role in ubicomp.
1. it is often important to know where and when something happened.

2. time and location are crucial for correlating information from different sources.

 Ubicomp devices have to share a common understanding of time and
location in order to tell whether they were at the same location at the same
point in time.
 common understanding of time i.e. time synchronization

 common understanding of time location i.e. device localization

 a need for services that manage spatio-temporal data.
 E.g. a location service maintains an up-to-date view of the current locations of devices

in the network.

 E.g. a history service stores location and time of past events, providing the foundation
for queries like “Where did devices X and Y meet last time?”

Collection, Processing & Storage of Sensory Data

 core ubicomp functionality

 sensors collect rather low-level data (e.g., time series of temperature
readings)

 applications are often interested in highlevel features -- e.g., “in a
conference”: used to automatically switch off mobile phones
 E.g. of functionality: context service:

 derivation of context information requiring the evaluation of sensory data of various types
(e.g., noise level, light intensity, air quality) originating from multiple sources..

 Need for energy efficiency and the high energy consumption of wireless
communication
 large amounts of raw sensory data are transmitted to a central location for

processing? is often not feasible !!! due to the resulting high energy consumption,
bandwidth limitations, and scalability issues.

 Solution: “in-network data aggregation”
 sensory data are preprocessed as close to its source as possible in order to reduce the

amount of data that has to be transmitted.

=> reduces communication and saves energy by transmitting compact aggregates instead of
bulky raw data.

=> blur the clear separation of communication and data processing typically found in
traditional distributed systems and respective middleware

Integration with Background Infrastructures

 Typically: ubicomp devices form infrastructureless ad hoc
networks

 Quite likely: some of the devices will be connected to a
background infrastructure such as the Internet.

=> Concept of global “Internet of Things” (e.g. EC programme
FP7-ICT) connecting smart artifacts all over the world.

 Reasons for such an integration:

 background infrastructures might be used to disseminate
information (e.g. room occupancy status) to remote destinations.

 background infrastructure may provide resources (e.g.,
computing power, storage) that are not available on typical
ubicomp devices.

Case Study: Sensor Networks

 subarea of ubicomp: “wireless sensor networks” (WSN).

 WSN consist of sensor nodes — small autonomous computing
devices equipped with sensors, wireless communication
capabilities, a processor, and a power supply.

 Example: such a sensor node is the MICA sensing device

 Counter-examples (UbiComp, not WSN): mobile device networks

 Appls:
 Biologists: monitor the behavior of animals in their natural habitats.

 Environmental research: monitoring environmental pollutions.

 Agriculture: observing soil quality and other parameters that
influence plant growth.

 Geologists: monitoring seismic activity and its influences on the
structural integrity of buildings.

 Military: monitoring activities in inaccessible areas.

Typical usage model of a sensor network

1. A user specifying a high-level sensing task -- e.g., “Report
rooms where average noise level exceeds a certain threshold”.

2. This task is split into many simple subtasks, which are distributed
to the individual nodes of the network.

3. These subtasks collect and preprocess low-level sensor
readings.

4. The resulting sensory data is then aggregated and processed to
form a high-level sensing result that is reported back to the user.

 There is a strong need for abstractions that allow easy tasking of
the network as a whole.

 Middleware for sensor networks should support such
programming abstractions

TinyDB

 A no. approaches treat the sensor network as a
distributed database
 users can issue SQL-like queries to have the network

perform a certain sensing task.

 TinyDB is a representative of this class.
 Supports a single “virtual” database table sensors:

 each column corresponds to
 a specific type of sensor (e.g., temperature, light) or

 other source of input data (e.g., sensor node identifier, remaining
battery power).

 Reading out the sensors at a node can be regarded as
appending a new row to sensors.

 The query language is a subset of SQL with some
extensions.

TinyDB example

 Several rooms are equipped with multiple sensor nodes each.

 Each sensor node is equipped with sensors to measure the acoustic volume.

 The table sensors contains

 room number the sensor is in,

 floor on which the room is located and

 volume.

 ? Determine rooms on the 6th floor where the average volume exceeds the
threshold 10

 R: Query:
SELECT AVG(volume), room // a pair of average volume and the respective room number is returned

FROM sensors

WHERE floor = 6 // selects rows from sensors at the 6th floor

GROUP BY room // selected rows are grouped by the room number

HAVING AVG(volume) > 10 // the average volume of each of the resulting groups is calculated

// only groups with an average volume above 10 are kept

EPOCH DURATION 30s // query is re-executed every 30 seconds

TinyDB approach
 Uses a decentralized approach:

 each sensor node has its own query processor that preprocesses and aggregates sensor data on its
way from the sensor node to the user.

 Executing a query involves the following steps:
1. A spanning tree of the network rooted at the user device is constructed and maintained as the network

topology changes, using a controlled flooding approach
 flood messages are also used to roughly synchronize time among the nodes of the network.

2. A query is broadcast to all the nodes in the network by sending it along the tree from the root toward the
leaves
 a time schedule is established, such that a parent and its children agree on a time interval when the parent will listen

for data from its children

3. At the beginning of every epoch, the leaf nodes obtain a new table row by reading out their local
sensors.

4. Leaf apply the select criteria to this row.

5. If the criteria are fulfilled, a partial state record is created that contains all the necessary data (i.e., room
number, floor number, average volume in the example).

6. The partial state record is then sent to the parent during the scheduled time interval.

7. The parent listens for any partial state records from its children during the scheduled interval.

8. The parent proceeds like the children by reading out its sensors, applying select criteria, and generating
a partial state record if need be.

9. The parent aggregates its partial state record and the records received from its children (i.e., calculates
the average volume in the example), resulting in a new partial state record.

10. The new partial state record is then sent to the parent’s parent during the scheduled interval.

11. This process iterates up to the root of the tree.

12. At the root, the final partial state record is evaluated to obtain the query result.

13. The whole procedure repeats every epoch.

SensorWare
 Class of middleware approaches inspired by mobile code and mobile agents:

 the sensor network is tasked by injecting in it a program that

 can collect local sensor data,

 can statefully migrate or copy itself to other nodes,

 can communicate with such remote copies.

 SensorWare is a representative of this class
 programs are specified in Tcl:

 functionality specific to SensorWare implemented as a set of additional procedures in Tcl interpreter.

 Query: takes a sensor name (e.g., volume) and a command as parameters.

 Value: used to obtain a sensor reading.

 Send: takes a node address and a message as parameters and sends the message to the
specified sensor node.
 Node addresses: a unique node ID, a script name, and additional identifiers to distinguish copies of the

same script.

 Replicate: takes one or more sensor node addresses as parameters and spawns copies of
the executing script on the specified remote sensor nodes.
 Node addresses are either unique node identifiers or “broadcast” (i.e., all nodes in transmission range).

 Checks whether a remote sensor node is already executing the specified script.

 The wait command expects a set of event names as parameters and suspends the execution
of the script until one of the specified events occurs
 The occurrence of an asynchronous activity (e.g., reception of a message, expiry of a timer) is

represented by a specific event each.

DSWare
 another approach to sensor network middleware is based on the notion of events.

 the application specifies interest in certain state changes of the real world (“basic events”).

 Upon detecting an event, a sensor node sends an event notification toward interested appls.

 The application can also specify certain patterns of events (“compound events”), such that the
application is only notified if occurred events match this pattern.

 DSWare is a representative of this class.
 supports the specification and automated detection of compound events.

 A compound event specification contains:
1. an event identifier,

2. a detection range specifying the geographical area of interest,

3. a detection duration specifying the time frame of interest,

4. a set of sensor nodes interested in this compound event,

5. a time window W,

6. a confidence function f,

7. a minimum confidence cmin, and

8. a set of basic events E.

 The confidence function f maps E to a scalar value.

 The compound event is detected and delivered to the interested sensor nodes,

if f(E)≥cmin and all basic events occurred within time window W.

DSWare example

 Detecting an explosion event – requires:
 the occurrence of a light event (i.e., a light flash),

 a temperature event (i.e., high ambient temperature), and

 a sound event (i.e., a bang sound) within a subsecond time window W.

 The confidence function is defined:
f=0.6 ·B(temp)+0.3 ·B(light)+0.3 ·B(sound)

(the detection of the temperature event gives us higher confidence in an actual
explosion happening than the detection of the light and sound events)

 The function B maps an event ID to
 1 if the respective event has been detected within the time window W, and

 0 otherwise.

 With cmin=0.9, f would trigger the explosion event if the temperature
event is detected along with one or both of the light and sound events.

