
1

Distributed Systems – Techs

4. Web Services

W3C Definitions

 WS is a software system designed to support
interoperable machine to machine interaction over a
network

 software system
 identified by a URI (accessible on the Web through a URL)

 whose public interfaces and bindings are defined and
described using XML artifacts (such as Web Services
Definition Language - WSDL)

 other software systems
 can discover its definition & may then interact with the

Web service in a manner prescribed by its definition

 access it through XML-based protocols such as Simple
Object Access Protocol (SOAP) sent over accepted
Internet protocols, such as HTTP

WS Arch. (WSA) as Distrib.Comput.Arch. (DCA)

 purpose of a DCA: enable programs in one environment to communicate

and share data/content with programs in another environment.

 Classic: programmers have had to

 tell one application program where to go to find another cooperative

program - known as "tightly coupling" applications.

 maintain these programmatic links over the useful life of the applications

that they have written.

 Creating these "hard-wired" links is complicated and cumbersome

 WSA - A new DCA ?

 the applications themselves could automatically find cooperative

programs to work with

 program-to-program communications process – called "loosely coupled."

Definition by Gartner research - 2001

 Def: WSs are loosely coupled software components

delivered over Internet standard technologies.

 WSs are self-describing and modular business appls…

 … that expose the business logic as services over the

Internet…

 … through programmable interfaces and using Internet

protocols …

 … for the purpose of providing ways to find, subscribe, and

invoke those services.

 WSs can be developed using any programming

language, any protocol, or any platform

Historical evolution: the beginning

 late 1990s, Microsoft & a couple of other companies were

thinking about an XML-based RPC that could work over HTTP.

 Term SOAP was coined in 1998.

 First versions of SOAP 1.0 published in Dec 1999.

 Support from both the commercial and Open Source community -

> 2001, SOAP 1.2.

 Microsoft, IBM, and Sun Microsystems are pushing WSs as the

next great technology to allow developers to create remote

objects easily.

 Earlier remote object technologies, such as COM+ and CORBA,

were difficult to implement and had high maintenance costs.

Historical evolution: WS as result of Web evolution

1. Initially, the Web consisted of sites that were plain HTML pages.

2. Later, Web appls. dynamically generated these HTML pages.

 Web appls. are still limited to the GUI capabilities of their HTML pages

 Enable interaction between and end user and a Web site

3. WSs go beyond this limitation, since they separate the Web site or
application (the service) from its HTML GUI.

 the service is represented in XML and available via the Web as XML.

 Enable the application-to-application communication over the Internet

 Map Web site example:

1. Web site: only static links to maps of various cities and locales

2. Web appl: provide driving directions, customized maps, etc

3. Extend functionality to provide a Web service: other enterprises can
use to provide directions to their own office locations integrate with
global position systems

Technical reasons for choosing Web

services over Web appls

 WSs can be invoked through XML-based RPC
mechanisms across firewalls.

 WSs provide a cross-platform, cross-language
solution based on XML messaging.

 WSs facilitate ease of application integration using
a light-weight infrastructure without affecting
scalability.

 WSs enable interoperability among heterogeneous
applications.

Example: the travel reservation services

 Expose business appls
as Web services

 Supporting a variety of
customers and
application clients

 Business appls are
provided by different
travel organizations
residing at different
networks and
geographical locations

Reusable objects as a fundamental concept in WSs

Example:

 a programmer write ONCE a calculator program as

a WS

 Available for (bolted-onto, coupled or reused):

 a spreadsheet program,

 a customized transaction program,

 a mortgage amortization program, or

 any other program that could logically make use of a

calculator.

Realm of WS

 ! software components that are programmatically
accessible over standard Internet protocols
 “The Internet is the OS”!

 WSs expose a standard interface that is platform
and technology independent.

 Context: the growing need for application-to-
application communication and interoperability.
 WSs provide a means of communication among software

applications
 running on different platforms and

 written in different application development languages

 present dynamic context-driven information to the user.

Key benefits of WS

 Interoperability in a heterogeneous environment

 Business services through the Web

 Integration with existing systems

 Freedom of choice

 Support more client types

 Programming productivity

Elements of a WS platform (1/4)

Elements of a WS Platform (2/4)

1. Service contract
 unambiguous, well-defined service interface using WSDL.

 should be human-readable and machine-readable.

2. Service contract repository
 Might include taxonomies in UDDI or another registry to categorize

services and search Should be highly available and replicated.

3. Service registration and lookup
 A naming service for locating service instances and run-time

resources

 Whereas the service contract repository is used to look up service
contracts, service registration & lookup is used for finding run-time
instances of the services.

4. Service-level security
 authenticating service requesters,

 role-based access control,

 single-sign-on, privacy, integrity, non-repudiation.

Elements of a WS Platform (3/4)

5. Service-level data management
 Usage of XML Schema for data validation, data transformation,

mapping data between different message structures including data
filtering or data aggregation

6. Service-level communication
 Support for multiple interaction patterns and communication styles

using SOAP.

7. Multiple protocol and transport support
 Messaging infrastructure should support multiple transports/protocols

to support the wide range of clients, servers, and platforms.

8. Service-level qualities of service
 Support for message-ordering, guaranteed delivery or at-most-once

delivery

 Transaction management capabilities for defining and supporting
transaction execution and control including two-phase commit

 High-availability capabilities include clustering, failover, automatic-
restart, load balancing, and hot-deployment of services.

Elements of a WS Platform (4/4)

9. Service-level management

 Support for deploying, starting, stopping, and monitoring services.

 Support for versioning services.

 Support for auditing service usage.

 Support for metering and billing for service usage.

 Service monitoring, service status, service responsiveness, and
compliance or deviations from service-level agreements.

10.Support for multiple programming languages

 Support for generating service proxies and service skeletons for all
supported programming languages.

11.Service programming interfaces

 Provide service programming interfaces so that developers can
access the facilities of the WSs platform from their favorite
programming language(s)

Types of WS Architectures (WSAs)

 Differences in how they do their jobs

 Most common WSA:

1. Remote Procedure Call (RPC)

 XML-RPC provides a basic set of tools for creating cross-

platform RPC calls, using HTTP as a foundation

 WSs encapsulate RPC with XML as the data packaging.

2. Service-Oriented Architecture (SOA)

 Combining SOA techs with WSs basically gives:

 the WSs protocol stack,

 a collection of network protocols that are used to define and

implement how WSs interact with one another.

3. Representational State Transfer (REST)

WS Communication Models: 1- RPC model

 defines a request/response-based synchronous

communication.

 RPC-based Web services are tightly coupled and are

implemented with remote objects to the client appl.

 Both the service provider and requestor can register

and discover services

WS Communic. models – 2 Messasing-based

 defines a loosely coupled and document-driven communication

 the service requestor does not wait for a response.

 the client sends an entire document rather than sending a set of
parameters.

 the service provider may or may not return a message.

 Adopting a communication model also depends upon the WS provider
infrastructure and its compliant protocol for RPC or Messaging.

 The current version of SOAP and ebXML Messaging support these
communication models;

How Web services work

 Publish, find, and bind.

WS standards (see next lecture!)

Needs:

 Common markup language for communication

 Common message format for exchanging information

 Common service specification formats

 Common means for service lookup

Web Services Protocol Stack- 4 basic levels

 Service Transport:

 HTTP or HTTPS, SMTP, and FTP.

 Service Messaging

 XML-RPC and SOAP.

 Service Description

 WSDL format is usually used.

 Service Discovery

 the UDDI protocol is used for this purpose.

Service binding

 Is different for an SOA based on WS compared to an

SOA based on J2EE or CORBA:

 J2EE, CORBA: binding via reference pointers or names,

 WSs bind using discovery of services, which may be

dynamic.

 If the service requester can understand

 the WSDL and

 associated policy files supplied by the provider,

SOAP messages can be generated dynamically to

execute the provider's service.

WS Implementations
 2 major technological camps in the WSs industry.

1. Microsoft.

 got a head start because its people developed the SOAP standard

and then gave it to the open-source community.

 before other developers knew about the SOAP standard, Microsoft

had already begun developing programming languages such as

C# and Visual Basic.NET to create a proprietary implementation.

2. Revolves around Java,

 E.g. Sun Microsystems, creator of Java, deploying technologies.

 Other vendors include BEA, Cape Clear Software, IBM, etc

 Several WS libraries that are free and easily downloaded e.g. from

Sun and the Apache group.

 Third-party products available that allow WSs to integrate

with CORBA, COBOL, C++, and other legacy systems.

Microsoft .NET implementation

 Provides a large number of tools to make the creation
and use of WSs very easy.

 includes

 the automatic generation of WSDL,

 discovery tools such as disco (which searches servers
that have .NET Web services),

 browser-based testing and discovery of methods, and

 easy creation of WSs within Microsoft’s proprietary
languages.

 But all of the Microsoft WS technologies rely on their
Web server Internet Information Server (IIS).

 Has security problems.

Java implementation

 Sun and IBM deliver WS products.

 Apache group provides a great free SOAP library to
access WSs.

 Advantages to using WSs with Java.

 several different vendors implement WSs with Java

 Java WSs work on top of
 both Java Server Pages (JSP) and servlets,

 Tomcat which is a free Java server that integrates easily with
Apache, is free from the Apache group.

 IBM’s Websphere, BEA’s WebLogic, and Sun’s iPlanet server are
all commercially available WS that allow a developer more options
when deploying WSs.

Different implementation in Java

 SUN SDK: starts from an
interface

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface AccountIF
extends Remote {

public void deposit (int amount)
throws RemoteException;

public void withdraw (int
amount) throws
RemoteException;

public int balance () throws
RemoteException;

}

 BEA’s WebLogic Server
product: starts from a Java
class

public class Account implements
com.bea.jws.WebService

{

static final long
serialVersionUID = 1L;

/**

* @common:operation

*/

public void deposit (int amount);
{

...

