
1

Distributed Systems – Techs

4. Web Services

W3C Definitions

 WS is a software system designed to support
interoperable machine to machine interaction over a
network

 software system
 identified by a URI (accessible on the Web through a URL)

 whose public interfaces and bindings are defined and
described using XML artifacts (such as Web Services
Definition Language - WSDL)

 other software systems
 can discover its definition & may then interact with the

Web service in a manner prescribed by its definition

 access it through XML-based protocols such as Simple
Object Access Protocol (SOAP) sent over accepted
Internet protocols, such as HTTP

WS Arch. (WSA) as Distrib.Comput.Arch. (DCA)

 purpose of a DCA: enable programs in one environment to communicate

and share data/content with programs in another environment.

 Classic: programmers have had to

 tell one application program where to go to find another cooperative

program - known as "tightly coupling" applications.

 maintain these programmatic links over the useful life of the applications

that they have written.

 Creating these "hard-wired" links is complicated and cumbersome

 WSA - A new DCA ?

 the applications themselves could automatically find cooperative

programs to work with

 program-to-program communications process – called "loosely coupled."

Definition by Gartner research - 2001

 Def: WSs are loosely coupled software components

delivered over Internet standard technologies.

 WSs are self-describing and modular business appls…

 … that expose the business logic as services over the

Internet…

 … through programmable interfaces and using Internet

protocols …

 … for the purpose of providing ways to find, subscribe, and

invoke those services.

 WSs can be developed using any programming

language, any protocol, or any platform

Historical evolution: the beginning

 late 1990s, Microsoft & a couple of other companies were

thinking about an XML-based RPC that could work over HTTP.

 Term SOAP was coined in 1998.

 First versions of SOAP 1.0 published in Dec 1999.

 Support from both the commercial and Open Source community -

> 2001, SOAP 1.2.

 Microsoft, IBM, and Sun Microsystems are pushing WSs as the

next great technology to allow developers to create remote

objects easily.

 Earlier remote object technologies, such as COM+ and CORBA,

were difficult to implement and had high maintenance costs.

Historical evolution: WS as result of Web evolution

1. Initially, the Web consisted of sites that were plain HTML pages.

2. Later, Web appls. dynamically generated these HTML pages.

 Web appls. are still limited to the GUI capabilities of their HTML pages

 Enable interaction between and end user and a Web site

3. WSs go beyond this limitation, since they separate the Web site or
application (the service) from its HTML GUI.

 the service is represented in XML and available via the Web as XML.

 Enable the application-to-application communication over the Internet

 Map Web site example:

1. Web site: only static links to maps of various cities and locales

2. Web appl: provide driving directions, customized maps, etc

3. Extend functionality to provide a Web service: other enterprises can
use to provide directions to their own office locations integrate with
global position systems

Technical reasons for choosing Web

services over Web appls

 WSs can be invoked through XML-based RPC
mechanisms across firewalls.

 WSs provide a cross-platform, cross-language
solution based on XML messaging.

 WSs facilitate ease of application integration using
a light-weight infrastructure without affecting
scalability.

 WSs enable interoperability among heterogeneous
applications.

Example: the travel reservation services

 Expose business appls
as Web services

 Supporting a variety of
customers and
application clients

 Business appls are
provided by different
travel organizations
residing at different
networks and
geographical locations

Reusable objects as a fundamental concept in WSs

Example:

 a programmer write ONCE a calculator program as

a WS

 Available for (bolted-onto, coupled or reused):

 a spreadsheet program,

 a customized transaction program,

 a mortgage amortization program, or

 any other program that could logically make use of a

calculator.

Realm of WS

 ! software components that are programmatically
accessible over standard Internet protocols
 “The Internet is the OS”!

 WSs expose a standard interface that is platform
and technology independent.

 Context: the growing need for application-to-
application communication and interoperability.
 WSs provide a means of communication among software

applications
 running on different platforms and

 written in different application development languages

 present dynamic context-driven information to the user.

Key benefits of WS

 Interoperability in a heterogeneous environment

 Business services through the Web

 Integration with existing systems

 Freedom of choice

 Support more client types

 Programming productivity

Elements of a WS platform (1/4)

Elements of a WS Platform (2/4)

1. Service contract
 unambiguous, well-defined service interface using WSDL.

 should be human-readable and machine-readable.

2. Service contract repository
 Might include taxonomies in UDDI or another registry to categorize

services and search Should be highly available and replicated.

3. Service registration and lookup
 A naming service for locating service instances and run-time

resources

 Whereas the service contract repository is used to look up service
contracts, service registration & lookup is used for finding run-time
instances of the services.

4. Service-level security
 authenticating service requesters,

 role-based access control,

 single-sign-on, privacy, integrity, non-repudiation.

Elements of a WS Platform (3/4)

5. Service-level data management
 Usage of XML Schema for data validation, data transformation,

mapping data between different message structures including data
filtering or data aggregation

6. Service-level communication
 Support for multiple interaction patterns and communication styles

using SOAP.

7. Multiple protocol and transport support
 Messaging infrastructure should support multiple transports/protocols

to support the wide range of clients, servers, and platforms.

8. Service-level qualities of service
 Support for message-ordering, guaranteed delivery or at-most-once

delivery

 Transaction management capabilities for defining and supporting
transaction execution and control including two-phase commit

 High-availability capabilities include clustering, failover, automatic-
restart, load balancing, and hot-deployment of services.

Elements of a WS Platform (4/4)

9. Service-level management

 Support for deploying, starting, stopping, and monitoring services.

 Support for versioning services.

 Support for auditing service usage.

 Support for metering and billing for service usage.

 Service monitoring, service status, service responsiveness, and
compliance or deviations from service-level agreements.

10.Support for multiple programming languages

 Support for generating service proxies and service skeletons for all
supported programming languages.

11.Service programming interfaces

 Provide service programming interfaces so that developers can
access the facilities of the WSs platform from their favorite
programming language(s)

Types of WS Architectures (WSAs)

 Differences in how they do their jobs

 Most common WSA:

1. Remote Procedure Call (RPC)

 XML-RPC provides a basic set of tools for creating cross-

platform RPC calls, using HTTP as a foundation

 WSs encapsulate RPC with XML as the data packaging.

2. Service-Oriented Architecture (SOA)

 Combining SOA techs with WSs basically gives:

 the WSs protocol stack,

 a collection of network protocols that are used to define and

implement how WSs interact with one another.

3. Representational State Transfer (REST)

WS Communication Models: 1- RPC model

 defines a request/response-based synchronous

communication.

 RPC-based Web services are tightly coupled and are

implemented with remote objects to the client appl.

 Both the service provider and requestor can register

and discover services

WS Communic. models – 2 Messasing-based

 defines a loosely coupled and document-driven communication

 the service requestor does not wait for a response.

 the client sends an entire document rather than sending a set of
parameters.

 the service provider may or may not return a message.

 Adopting a communication model also depends upon the WS provider
infrastructure and its compliant protocol for RPC or Messaging.

 The current version of SOAP and ebXML Messaging support these
communication models;

How Web services work

 Publish, find, and bind.

WS standards (see next lecture!)

Needs:

 Common markup language for communication

 Common message format for exchanging information

 Common service specification formats

 Common means for service lookup

Web Services Protocol Stack- 4 basic levels

 Service Transport:

 HTTP or HTTPS, SMTP, and FTP.

 Service Messaging

 XML-RPC and SOAP.

 Service Description

 WSDL format is usually used.

 Service Discovery

 the UDDI protocol is used for this purpose.

Service binding

 Is different for an SOA based on WS compared to an

SOA based on J2EE or CORBA:

 J2EE, CORBA: binding via reference pointers or names,

 WSs bind using discovery of services, which may be

dynamic.

 If the service requester can understand

 the WSDL and

 associated policy files supplied by the provider,

SOAP messages can be generated dynamically to

execute the provider's service.

WS Implementations
 2 major technological camps in the WSs industry.

1. Microsoft.

 got a head start because its people developed the SOAP standard

and then gave it to the open-source community.

 before other developers knew about the SOAP standard, Microsoft

had already begun developing programming languages such as

C# and Visual Basic.NET to create a proprietary implementation.

2. Revolves around Java,

 E.g. Sun Microsystems, creator of Java, deploying technologies.

 Other vendors include BEA, Cape Clear Software, IBM, etc

 Several WS libraries that are free and easily downloaded e.g. from

Sun and the Apache group.

 Third-party products available that allow WSs to integrate

with CORBA, COBOL, C++, and other legacy systems.

Microsoft .NET implementation

 Provides a large number of tools to make the creation
and use of WSs very easy.

 includes

 the automatic generation of WSDL,

 discovery tools such as disco (which searches servers
that have .NET Web services),

 browser-based testing and discovery of methods, and

 easy creation of WSs within Microsoft’s proprietary
languages.

 But all of the Microsoft WS technologies rely on their
Web server Internet Information Server (IIS).

 Has security problems.

Java implementation

 Sun and IBM deliver WS products.

 Apache group provides a great free SOAP library to
access WSs.

 Advantages to using WSs with Java.

 several different vendors implement WSs with Java

 Java WSs work on top of
 both Java Server Pages (JSP) and servlets,

 Tomcat which is a free Java server that integrates easily with
Apache, is free from the Apache group.

 IBM’s Websphere, BEA’s WebLogic, and Sun’s iPlanet server are
all commercially available WS that allow a developer more options
when deploying WSs.

Different implementation in Java

 SUN SDK: starts from an
interface

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface AccountIF
extends Remote {

public void deposit (int amount)
throws RemoteException;

public void withdraw (int
amount) throws
RemoteException;

public int balance () throws
RemoteException;

}

 BEA’s WebLogic Server
product: starts from a Java
class

public class Account implements
com.bea.jws.WebService

{

static final long
serialVersionUID = 1L;

/**

* @common:operation

*/

public void deposit (int amount);
{

...

