
1

Distributed Systems – Techs

5. Service-Oriented Architectures

2

SOA

 Term first coined by Yefim Natis in one of the
research papers in 1994:
SOA is a software architecture

that starts with an interface definition and

builds the entire application topology as a topology of
interfaces, interface implementations, and interface calls.

 Despite being coined much earlier, SOA started to
become a buzzword only in early 2000.

 With the advent of Web services and WSDL
compliant business process, SOA started to become
popular among technology enthusiasts.

3

SOA – an Architectural Style

 SOA is a style of design that guides all aspects of creating
and using services throughout their lifecycle (from
conception to retirement).

 SOA is a way to define and provision an IT infrastructure to
allow different applications to exchange data and
participate in processes,
 regardless of the OSs or

 Regardless the programming languages underlying those appls.

 An approach to building IT systems in which services are
the key organizing principle used to align IT systems with
the needs of the business.
 In contrast, earlier approaches tended to directly use specific

features and functions of a particular execution environment (e.g.
OO)

4

SOA promotes software reusability
 The concept is not new:

 Traditional OO archs promote reusability by reusing classes or
objects.
 objects are often too fine grained for effective reuse.

 Component-oriented architectures emerged that use software
components as reusable entities.
 These components consist of a set of related classes, their resources,

and configuration information.

 Do not address additional issues arising from current day enterprise
envirs:
 Today, enterprise environments are quite complex due to the use of a

variety of software & hardware platforms, Internet-based distributed
communication etc.

 SOA address these issues by using a service as a
reusable entity.
 The services are typically coarser grained than components

 The services communicate with each other and with end-user
clients through well-defined and well-known interfaces.

5

Fundamental of SOA
 Based upon: Service, Message

and Dynamic discovery.

 In a SOA, we have:

1. A service that implements the
business logic and exposes this
business logic through well-defined
interfaces.

2. A registry where the service
publishes its interfaces to enable
clients to discover the service.

3. Clients (including clients that may
be services themselves!) who
discover the service using the
registries and access the service
directly through the exposed
interfaces.

6

Core components

At a high level, SOA is formed out of
three core components:

1. Service Provider (Service) - offers
processes in the form of services

2. Service Consumer (Consumer) -
services offered by the provider are
called by the consumer

3. Directory Services (enabled by
Broker) - lie between the provider
and the consumer

-The service to be made

available to the consumer is

published to the directory

services in the broker.

-The consumer will discover the

service from the broker.

-If the service is found, it will

bind to the service and execute

the processing logic.

7

Service Abstraction

 The metadata specify:

 The location on the network (network address for the service)

 The a machine-readable description of the messages it

receives and optionally returns.

 Defines what message exchange patterns it supports.

 A schema for the data contained in the message is used as the

main part of the contract (i.e., description) established between

a service requester and a service provider.

 The operations it supports, and

 Requirements for reliability, security, etc

 The service implementation can be any execution

environment for which services support is available.

8

Executable agent and mapping layer

 The service implementation is also called the
executable agent.

 runs within the execution environment,

 Service description is separated from its executable
agent:
 one description might have multiple different executable agents

associated with it.

 one agent might support multiple descriptions.

 A mapping layer (also called a transformation layer):

 Is often implemented using proxies and stubs.

 Is responsible for accepting the message,

 Transforms the description data to the native format

 Dispatches the data to the executable agent.

9

Service handler

 Services are published by the 'provider' and they bind to
the 'consumer' through the service 'handler'.

 The service handler acts as a collaboration agent
between the provider and the consumer.

 The handler contains the realization logic

 Once the service has been requested, it goes through
various messaging paths and, at times, into multiple
handlers

 The handler usually routes the messages to the target
system or sometimes does some processing logic before
forwarding the request to target system.

10

Requester and provider

 A requester (consumer) can be a provider & vice versa

 an execution agent can play either or both roles

 One of the greatest benefits of service abstraction is its ability to easily
access a variety of service types, including

 newly developed services,

 wrapped legacy applications, and

 applications composed of other services (both new and legacy).

11

SOA Objectives

1. Loose coupling:

 The decomposition into independent services will help in

bringing down the dependencies on a single process.

2. Platform-neutrality:

 XML-based message information flow enhances the capability to

achieve platform neutrality.

3. Standards:

 The message flow is in the form of globally accepted standards.

 The service only has to depend on the service descriptions

12

SOA Objectives (2/2)

4. Reusability:

 The application logic being divided into smaller

logical units, the services can easily be re-used.

5. Scalability:

 As the processes are decomposed into smaller

units, adding new business logic is easy to

accomplish.

 The new logic could either be added as an extended

unit of the current service, or it can also be

constructed as a new service.

13

Advantages of SOA (1/2)
1. It enables development of loosely-coupled applications that can

be distributed and are accessible across a network.

2. Integration:

 SOA-based solution is usually based upon the principles of inter-
operability.

 Lower cost of integration development through a compounded sol.

3. Business Agility:

 The benefit in terms of software assets can be derived from SOA's
ability to re-use and simplify integrations.

 development period get shortened.

 easy to accommodate changes => solution evolves over a longer time period

 In terms of hardware benefits, due to the abstract use of services
being loosely coupled, they can be delegated across the domains

 This helps in balancing the business processes load across the organization

4. Assets Re-use:

5. Increased ROI (Return-of-Investment)

14

Transition to SOA

 The biggest issue faced in SOA implementation is the
complexity of the solutions.
 the dismantling of the current business processes into

smaller services is a huge challenge in itself.

 Approaches:

1. Top-down:

 the business use cases are created, which gives the
specifications for the creation of services.

 the functional units are decomposed into smaller processes and
then developed.

2. Bottom-up:

 the current systems within the organization are studied, and

 suitable business processes are identified for conversion to
services.

15

SOA vs. OO and CBD

 SOA is a natural improvement over the object-

oriented (OO) and the component-based

development (CBD).

 it still retains some of the flavors from each of them.

 the processes are powered by small pieces of

software known as 'components'.

 The logic inside the components is based on the

principles of OO programming.

16

SOAs implemented using a variety of techs

 Distributed objects CORBA, J2EE, COM/DCOM.

 Message-oriented middleware (MOM)

WebSphere MQ, Tibco Rendezvous.

 TP monitors CICS, IMS, Encinia, Tuxedo.

 B2B platforms ebXML, RosettaNet.

 Web services

 …

17

WebSphere MQ

 Many large organizations have created SOAs using

WebSphere MQ

 Case study: AXA Financial

 insurance and financial services company,

 uses WebSphere MQ as a messaging and integration layer to

connect legacy systems with front-end applications.

 AXA began developing the architecture in 1989.

 The SOA integration architecture currently handles more than

600,000 transactions a day.

 Only a small fraction of WebSphere MQ systems are

service-oriented.

18

CORBA (1/2)

 Why CORBA for SOA?:
 Is an open standard.

 Supports remote method invocation (i.e., RPC calls), asynchronous
messaging, and publish/subscribe communications.

 Provides integrated security, naming services, transaction
management, and reliable messaging.

 Supports multiple programming languages.

 Provides CORBA IDL used as a service definition language.

 Objects can be exposed as Web services because the OMG has
defined a CORBA IDL to WSDL mapping.

 Some limitations for implementing an SOA:
 is perceived as being complex.

 requires both the requester and provider to be using CORBA.

 does not provide explicit support for XML and

 does not support asynchronous exchange of documents over Internet.

19

CORBA (2/2)
 Many large organizations have created SOAs using

CORBA
 Case study: Credit Suisse Group

 is a leading global financial services company headquartered in Zurich,
Switzerland.

 In 1997, Credit Suisse started the implementation of an SOA called the
Credit Suisse Information Bus (CSIB):
 the goal of the CSIB was to enable reliable, secure, and scalable real-

time request/reply interoperability between back-end systems and a
variety of front-end applications based on different platforms (J2EE, C++,
SmallTalk, HTML, COM, and Visual Basic).

 it replaced an integration infrastructure based on IBM WebSphere MQ
that was becoming expensive and difficult to maintain

 Credit Suisse's SOA supports more than 100,000 users, including 600
business services in production.

 Only a small percentage of CORBA systs are service-
oriented.

20

Java and J2EE technologies (1/2)

 Have many of the same advantages and disadvantages as CORBA
when it comes to implementing an SOA.

 Similarities related to SOA with CORBA:

 Both are open standards.

 Both are distributed object technologies that provide excellent support
for remote method invocation

 Both require the service requester and the service provider to be
using the same technology stack (i.e., J2EE and CORBA).

 Both provide
 integrated security,

 naming services (JNDI and CORBA Naming Service),

 transaction management (JTA/JTS and Object Transaction Service), and

 reliable messaging (JMS and CORBA Notification).

 Both J2EE EJBs and CORBA objects can be exposed as Web
services.

21

Java and J2EE technologies (2/2)

 Here are some of the differences related to SOA:

 CORBA supports multiple programming languages.

 CORBA provides CORBA IDL as an explicit interface definition
language.

 J2EE Web services communicate natively using XML and SOAP,
whereas the CORBA WSDL mapping still communicates using
CDL and IIOP.

 The Java Community Process has defined a series of APIs for
manipulating XML (e.g., JAX-RPC, JAAS, JAX-B, and so on).

 J2EE has a much larger and more robust developer community.

 J2EE implementations are available from most of the major IT
vendors.

 Not all J2EE systems are service-oriented,

 Most J2EE applications are tightly coupled

22

B2B platforms

 Examples: ebXML and RosettaNet

 Ideal SOA platforms because:

 Are open standards.

 Are loosely coupled.

 Are based on XML.

 Are based on the asynchronous exchange of documents (i.e.,
XML documents).

 Provide integrated mechanisms for

 service registration,

 service security,

 service monitoring and management,

 business process management,

 compensating transactions, and

 reliable messaging.

23

SOA using Web Services
 Major advantage of implementing an SOA using Web services:

 WSs are pervasive, simple, and platform-neutral.

 Other advantages derived from the way in which the WWW
achieved its success:

 a simple document markup language approach such as HTML
(or XML) can provide a powerful interoperability solution

 a lightweight document transfer protocol such as HTTP can
provide an effective, universal data transfer mechanism.

 On the Web, it doesn't matter
 whether the OS is Linux, Windows, OS390, HP NonStop, or Solaris.

 whether the Web server is Apache or IIS.

 whether the logic is coded in Java, C#, COBOL, Perl, or LISP.

 whether the browser is Netscape, Internet Explorer, Mozilla, or the W3C's
Amaya.

 WSs can understand and process an XML-formatted message
received using a supported communications transport and return
a reply if one is defined.

24

Web services platform

Capabilities of the complete Web services platform:

