
Streaming processing systems



Context

 With the popularisation of the IoT, the no. intelligent 

devices used for monitoring, managing, and servicing 

has rapidly increased. 

 The interconnected data sources generate fresh data 

continuously, forming a large number, or a massive flow, 

of data streams that will eventually overwhelm the 

traditional data management systems

 Meanwhile, the evergrowing data generation has been 

accompanied by the escalating demands for low-latency 

data processing.



Stream processing

 The desire of fast data analysis gives birth to the

emergence of stream processing, a new in-memory 

processing paradigm that allows for the collection,

analysis, and visualisation of streaming data with only 

seconds or milliseconds latencies.

 Stream processing is a paradigm to handle data streams 

upon arrival, powering latency-critical application such as 

fraud detection, algorithmic trading, and health 

surveillance



Particularities of  stream processing

 Unlike the traditional store-first, process-later batch paradigm, 

stream processing continuously consumes incoming data to 

provide immediate insights
 The incoming data are handled upon arrival, with the results being incrementally 

updated while the data flow through the system. 

 Presented with only limited resources to handle continuous

inputs, stream processing has no random access to the whole 

stream 
 Instead, it installs processing logic over time- or buffer-based windows, 

conducting lightweight and independent computations over recently arriving data. 

 In this way, the strict latency requirement can be met by proper workload 

balancing and processing parallelisation on a host of distributed resources



Distributed stream processing or splitting

 Stream processing needs specific SLAs on end-to-end 

latency, sustained stream throughput, and processing 

semantic guarantee to cope with the dynamic nature of 

input streams and the shared nature of the infrastructure

 The core concept behind distributed stream processing 

engines is the processing of incoming data items in real 

time by modelling a data flow in which there are several 

stages which can be processed in parallel.

 Other techniques include splitting the data stream into

multiple sub-streams and redirecting them into a set of

networked nodes



Why stream processing & resource 

management

 there are a variety of Distributed Stream Processing 

Systems (DSPSs) that facilitate the development of 

streaming applications

 resource management and task scheduling is not 

automatically handled by the DSPS middleware and 

requires a laborious process to tune toward specific 

deployment targets



Streaming system: application+DSPS+infrastructure

 From a structural perspective, a DSPS works as the 
middleware of a distributed system, offering 
 unified stream management, 

 imperative application programming interfaces (APIs), and 

 a set of streaming primitives to simplify the application
implementation. 

 State-of-the-art DSPSs: Apache Storm and Apache Flink
 further provide transparent fault-tolerance, scalability, and state 

management for the upper layer applications, while abstracting 
away the complexity of coordinating distributed resources.

 A typical streaming system is thus a three-tier structure 
comprising:
 user-applications, DSPS, and the underlying infrastructure.
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Deploy a streaming system

 labour-intensive task to deploy a streaming system in a 

distributed environment satisfying certain Quality of 

Service (QoS) requirements with minimal resource cost

 Three decisions:
(1) resource provisioning—determining the composition of the 

processing infrastructure, 

(2) operator parallelisation—configuring the degree of parallelism for 

streaming logic, and 

(3) task scheduling— deciding the placement of streaming tasks on 

distributed resources

 Cloud computing offers a scalable&elastic resource pool



(1) Resource provisioning
 describes the activities to estimate, select, and allocate appropriate 

resources from the service provider to constitute the interconnected stream
processing environment.

 Resource estimation: 
 Estimate the type and amount of resources needed by the system to meet its 

performance and cost targets articulated in the SLA. 

 Can be derived from the analysis of historical data as well as the prediction of future 
workload

 Its accuracy is often affected by the instantaneous, unexpected fluctuation of inputs 
and system performance variations due to the dynamic nature of data streams.

 Resource adaptation: 
 the real resource demands can fluctuate along with the varying workload, or remain 

vague and unclear even after the system is brought online.

 finding the right point in time to scale in/out and choosing the right adaptation scheme 
remains a huge challenge.

 The profitability of adaptation is affected by a no. factors such as the selected billing 
model. 

 The non-negligible network latency must be taken into consideration when performing 
system adaptation in a distributed manner



(2) Operator parallelisation
 divides a parallel operator into several functionally equivalent replicas, each 

handling a subset of the whole operator inputs to accelerate data processing

 Parallelism calculation: 
 require accurate profiling of stream workload and probing the processing capability of 

each task. 

 the number of cores/threads in a CPU confines the maximum degree of runtime 
parallelism

 Parallelism adjustment: 
 Over-parallelisation and under-parallelisation can occur at runtime as a result of 

workload change or resource adaptation. 

 Challenge: monitor and profile streaming tasks at a fine-grained level to reveal the true 
performance bottleneck of the application. 

 Balancing data source (inject data in graph)/sinks (peripheral operator only 
consume):
 needs to be fine-tuned as their performances are correlated due to the producer and 

consumer communication model in the streaming system.

 An overly powerful data source may cause severe backlogs in data sinks, whereas an 
inefficient data source would starve the subsequent operators and encumber the overall 
throughput



(3) Task scheduling

 dynamically maps streaming tasks resources, such that 
data streams are partitioned and processed at different 
locations simultaneously and independently. 

 the load balancing of stream routing relies on the DSPS to 
properly partition data streams among the streaming tasks 
belonging to the same operator

 Task scheduling for stream processing systems is similar to 
workflow scheduling for batch processing systems

 Objectives:
 Minimising inter-node communication

 Mitigating resource contention

 Performance-oriented scheduling



Apache Storm

 Distributed stream processing engine used by Twitter

following extensive development 

 Its initial release was 17 September 2011, and by

September 2014 it had become open-source

 used by companies such as Groupon, Yahoo!, Spotify,

Verisign, Alibaba, Baidu, Yelp, and many more

 the defined topology acts as a distributed data

transformation pipeline. 

 the programs in Storm are designed as a topology in the 

shape of DAG, consisting of ‘spouts’ and ‘bolts’



Spouts

 ‘Spouts’ read the data from external sources and emit 

them into the topology as a stream of ‘tuples’.

 This structure is accompanied by a schema which

defines the names of the tuples’ fields. 

 Tuples can contain primitive values such as integers, 

longs, shorts, bytes, strings, doubles, floats, booleans, 

and byte arrays. 

 Additionally, custom serializers can be defined to 

interpret this data.



Bolts

 The processing stages of a stream are defined in ‘bolts’ 

which can perform data manipulation, filtering, 

aggregations, joins, and so on. 

 Bolts can also constitute more complex transforming

structures that require multiple steps (thus, multiple

bolts). 

 The bolts can communicate with external applications 

such as databases and Kafka queues



Typical examples of  Storm’s usage

 Processing a stream of new data and updating

databases in real time, for example in trading systems 

wherein data accuracy is crucial;

 Continuously querying and forwarding the results to

clients in real time, for example streaming trending topics 

on Twitter into browsers,

 A parallelization of a computing-intensive query on the 

fly, i.e., a distributed Remote Procedure Call (RPC) 

wherein a large number of sets are probed



Problems of  Storm & solutions

 Problems
 Storm topologies, once created, run indefinitely until killed.

 the inefficient scattering of application’s tasks among Cluster nodes has a 
lasting impact on performance. 

 Storm’s default scheduler implements a Round Robin strategy. 

 For resource allocation purposes, Storm assumes that every worker 
is homogenous. 
 This design results in frequent resource over-allocation and inefficient use of 

inter-system communications 

 Solutions
 D-Storm from 2017 (academic)

 Its scheduling strategy is based on a metaheuristic algorithm Greedy, which 
also monitors the volume of the incoming workload and is resource-aware.

 Heron has replase Storm in 2018 at Twitter (commercial)
 new distributed stream processing engine, Heron, which continues the DAG

model approach, focuses on various architectural improvements such as 
reduced overhead, testability, and easier access to debug data.



Streaming and edge computing

 processing of continuous data streams as an ideal edge 
application, especially when those data streams are on end 
user premises and have a low access rate (e.g., video 
surveillance)

 Promise of edge computing: less bandwidth utilization in the 
core network
 Typically, all raw values would be streamed to the cloud; however, 

given the increase in data, this might overload the core network. 

 This is relevant since wide-area network bandwidth remains a 
scarce resource 

 The same holds true for many of today's wireless access networks

 Especially large, continuous data streams can be a burden on
backhaul networks.

 Distributed processing and aggregation of data streams along the 
path to the consumer can help to mitigate this.



Filtering at edge

 to discard irrelevant data

 since not all data is equally important, bandwidth savings

can be achieved by discarding irrelevant data before it is

transmitted for further processing.

 example: 

 thresholding of temperature readings in an application where an 

alarm should be raised when a certain value is exceeded

 temperature readings are irrelevant as long as they are within the 

normal range and thus need not be transmitted. 



Pre-processing at edge

 Data is transformed from one representation to another. 

 Besides saving bandwidth, reducing data locally can also help to save 

energy and reduce local storage needs.

 Discarding data could be interpreted as a special case of such a 

transformation

 Other possible transformations: the aggregation of data streams over time, 

data compression, data alteration, or bridging between formats. 

 For instance, real-time video analysis (a likely killer app for edge 

computing),

 only forwarding results of the analysis, e.g., the number of objects in the frame, 

instead of entire video streams or pre-process data for a face recognition 

application. 

 In case of time-critical data stream processing apps, distributing operations

entirely at the edge can reduce end-to-end latencies substantially


