
Distributed Systems – Technology

1. Modern Technologies for Distributed Applications

Two-tier architecture model

 Dominated the early years of distributed application
architecture

 Client-server architecture
 the first (upper) tier handles the presentation and business

logic of the user application (client),

 the second/lower tier handles the application organization
and its data storage (server).

 Widely used in
 enterprise resource planning,

 billing,

 inventory application systems (client business applications
residing in multiple desktop systems interact with a central
database server).

Common limitations of the client-server

application model

 Complex business processing at the client side demands robust
client systems.

 Security is more difficult to implement because the algorithms
and logic reside on the client side making it more vulnerable to
hacking.

 Increased network bandwidth is needed to accommodate many
calls to the server, which can impose scalability restrictions.

 Maintenance and upgrades of client applications are extremely
difficult because each client has to be maintained separately.

 Client-server architecture suits mostly database-oriented
standalone applications and does not target robust reusable
component-oriented applications.

CORBA

 Common Object Request Broker Architecture

 industry wide, open standard initiative, developed by the Object
Management Group (OMG)

 differs from the traditional client/server model:

 it provides an object-oriented solution that does not enforce any
proprietary protocols or any particular programming language,
operating system, or hardware platform

 Interface Definition Language (IDL) is a specific interface
language designed to expose the services (methods/functions) of
a CORBA remote object.

 defines a collection of system-level services for handling low-
level application services like life-cycle, persistence, transaction,
naming, security, and so forth.

ORB

 Object Request Broker

 is an object bus that provides a transparent mechanism for
sending requests and receiving responses to and from objects,
regardless of the environment and its location.

 intercepts the client’s call and is responsible for finding its server
object that implements the request, passes its parameters,
invokes its method, and returns its results to the client.

 provides interfaces to the CORBA services, which allows it to
build custom-distributed application environments.

 CORBA 2.0 added interoperability between different ORB
vendors by implementing an Internet Inter-ORB Protocol (IIOP):

 IIOP defines the ORB backbone, through which other ORBs can
bridge and provide interoperation with its associated services.

CORBA architectural model

 IDL contracts to specify the application boundaries and to establish interfaces with its

clients

 ORB acts as the object bus or the bridge, providing the communication infrastructure

to send and receive request/responses from the client and server.

CORBA advantages

 OS and programming-language

independence.

 Legacy and custom application integration.

 Rich distributed object infrastructure.

 Location transparency.

 Network transparency.

 Dynamic invocation interface.

CORBA disadvantages

 High initial investment. CORBA-based
applications require huge investments in regard to
new training and the deployment of architecture,
even for small-scale applications.

 Availability of CORBA services. The Object
services specified by the OMG are still lacking as
implementation products.

 Scalability. Due to the tightly coupled nature of the
connection-oriented CORBA architecture, very high
scalability expected in enterprise applications may
not be achieved.

Java RMI

 enables object-oriented distributed computing

 developed by Sun Microsystems as the

standard mechanism to enable distributed

Java objects-based application development

 allows to call remote Java objects and

passing them as arguments or return values.

 it uses Java object serialization—a

lightweight object persistence technique that

allows the conversion of objects into streams.

RMI architectural model (1)

 a registry (rmiregistry)-oriented mechanism provides
a simple non-persistent naming lookup service that
is used to store the remote object references and to
enable lookups from client applications

 Java Remote Method Protocol (JRMP) is the inter-
process communication protocol, enabling Java
objects living in different Java VMs to transparently
invoke one another’s methods

 a reference-counting garbage collection mechanism
keeps track of external live object references to
remote objects (live connections) using the VM

RMI architectural model (2)
 RMI client: Java applet / stand-alone application,

 performs the remote method invocations on a server object;

 pass arguments that are primitive data types or serializable objects.

 RMI stub: the client proxy
 generated by the RMI compiler (rmic in JDK)

 encapsulates the network info of the server

 performs the delegation of the method

invocation to the server.

 marshals the method arguments and

 unmarshals the return values from the

method execution.

 RMI infrastructure with two layers:
 the remote reference layer

 separates out the specific remote reference behavior from the client
stub;

 handles certain reference semantics like connection retries, which
are unicast/multicast of the invocation requests;

 the transport layer facilitates
 the actual data transfer during method invocations,

 the passing of formal arguments, and

 the return of back execution results.

RMI architectural model (3)
 RMI skeleton:

 generated using the RMI compiler (rmic)

 receives the invocation requests from
the stub and

 processes the arguments
(unmarshalling) and

 delegates them to the RMI server.

 marshals the return values and passes
them back to the RMI stub via the RMI
infrastructure.

 RMI server: the Java remote object
that
 implements the exposed interfaces and

executes the client requests

 receives incoming remote method
invocations from the respective
skeleton, which passes the parameters
after unmarshalling.

 return values are sent back to the
skeleton, which passes them back to
the client via the RMI infrastructure.

Advantages of Java RMI

 Developing distributed applications in RMI is simpler than
developing with Java sockets: there is no need to design a
protocol

 RMI is built over TCP/IP sockets, but the added advantage is that
it provides an object-oriented approach for inter-process
communications.

 provides an efficient, transparent communication mechanism that
frees the programmers of all the application-level protocols
necessary to encode and decode messages for data exchange.

 RMI enables distributed resource management, best processing
power usage, and load balancing in a Java application model.

 RMI-IIOP (RMI over IIOP): protocol developed for enabling RMI
applications to interoperate with CORBA components.

Disadvantages of Java RMI

 RMI is limited only to the Java platform.
 It does not provide language independence in its

distributed model as targeted by CORBA.

 RMI-based application architectures are tightly
coupled because of the connection-oriented nature.
 Achieving high scalability in such an application model

becomes a challenge.

 RMI does not provide any specific session
management support.
 In a typical client/server implementation, the server has to

maintain the session and state information of the multiple
clients who access it.

 Maintaining such information within the server application
with-out a standard support is a complex task.

Microsoft DCOM

 Microsoft Component Object Model (COM)

 a way for Windows-based software

components to communicate with each other

by defining a binary and network standard in

a Windows operating environment.

 enables COM applications to communicate

with each other using an RPC mechanism,

which employs a DCOM protocol

Architectural model of Microsoft DCOM

 skeleton and stub approach

 the stub

 encapsulates the network
location information of the
COM server object and

 acts as a proxy on the client
side.

 the servers

 can potentially host multiple
COM objects,

 register themselves against a
registry,

 clients discover servers using a
lookup mechanism

Advantages and disadvantages of DCOM

 successful in providing distributed computing

support on the Windows platform.

 Common limitations of DCOM:

 Platform lock-in : limited to Microsoft application

environments

 State management

 Scalability

 Complex session management issues

Message-Oriented Middleware (MOM)

 CORBA, RMI, and DCOM adopted a tightly coupled mechanism
of a synchronous communication model (request/response).

 MOM is based upon a loosely coupled asynchronous
communication model

 the application client does not need to know its application
recipients or its method arguments.

 Enables applications to communicate indirectly using a
messaging provider queue.

 The application client sends messages to the message queue (a
message holding area), and

 The receiving application picks up the message from the queue.

 The application sending messages to another application
continues to operate without waiting for the response from that
application.

MOM-based architectural model

 applications interacting with its messaging

infrastructure use custom adapters.

 for reliable message delivery, messages can be

persisted in a database/file system as well.

MOM Implementations and limitations

 SunONE Message Queue, IBM MQSeries, TIBCO, SonicMQ, and
Microsoft Messaging Queue (MSMQ).

 JMS: Java Message Service, is developed as part of the Sun Java
Community Process (JCP) and also is currently part of the J2EE
 JMS provides Point-to-Point and Publish/Subscribe messaging models

with the following features: complete transactional capabilities, reliable
message delivery, security.

 Common challenges while implementing a MOM-based application
environment :
 Most of the standard MOM implementations have provided native

APIs for communication with their core infrastructure
 this has affected the portability of applications across such

implementations and has led to a specific vendor lock-in.

 The MOM messages used for integrating applications are usually
based upon a proprietary message format without any standard
compliance.

Common Challenges in Distributed Computing

 Context:
 CORBA, RMI, and DCOM successful in integrating applications within a

homogenous environment inside a LAN

 Internet scale demands the interoperability of applications across networks

 Maintenance of various versions of stubs/skeletons in the client and
server environments is extremely complex in a heterogeneous network
environment

 Quality of Service (QoS) goals like Scalability, Performance, and
Availability in a distributed environment consume a major portion of the
application’s development time.

 Interoperability of applications implementing different protocols on
heterogeneous platforms almost becomes impossible
 E.g. a DCOM client communicating to an RMI server or an RMI client

communicating to a DCOM server.

 Most of these protocols are designed to work well within local networks
 They are not very firewall friendly or able to be accessed over the Internet.

Towards Internet scale and role of J2EE

 Internet-based enterprise application model:
 the focus is moved the complex business processing toward centralized

servers in the back end (cloud computing?)

 first generation of Internet servers:
 based upon Web servers that hosted static Web pages

 provided content to the clients via HTTP (HyperText Transfer Protocol).

 second generation: server-side scripting

 third generation: business-to-business (B2B) and business-to-
consumer (B2C) on Internet

 In this context J2EE
 provides a programming model based upon Web and business components

that are managed by the J2EE application server.

 the application server consists of many APIs and low-level services available
to the components.

 low-level services provide security, transactions, connections and instance
pooling, and concurrency services,
 which enable a J2EE developer to focus primarily on business logic rather than

plumbing.

Typical J2EE architecture

Three logical tiers

 Presentation tier composed of Web
components, which handle
 HTTP requests/responses,

 Session management,

 Device independent content delivery, and

 the invocation of business tier components.

 Application tier (Business tier) deals with the
core business logic processing (workflow &
automation).
 retrieve data from the information systems with

well-defined APIs provided by the application
server.

 Integration tier deals with connecting and
communicating to
 back-end Enterprise Information Systems (EIS),

 database applications and

 legacy applications,

 or mainframe applications.

Role of XML in Distributed Computing

 Extensible Markup Language (XML)

 Defines portable data in a structured and self-describing format

 Embraced by the industry as a communication medium for electronic
data exchange.

 Has been widely adopted and accepted as a standard by major
vendors in the IT industry, including Sun, IBM, Microsoft, Oracle, HP.

 Provides a new way of application-to-application communication on
the Internet.

 Promotes inter-operability between applications

 Enhances the scalability of the underlying applications

 Promotes a new form of the distributed computing technology
solution referred to as Web services.

