Distributed Systems — Technology

1. Modern Technologies for Distributed Applications

Two-tier architecture model

Dominated the early years of distributed application
architecture

Client-server architecture

o the first (upper) tier handles the presentation and business
logic of the user application (client),

o the second/lower tier handles the application organization
and its data storage (server).

Widely used In

o enterprise resource planning,

o billing,

o Inventory application systems (client business applications
residing in multiple desktop systems interact with a central
database server).

Common limitations of the client-server
application model

Complex business processing at the client side demands robust
client systems.

Security is more difficult to implement because the algorithms
and logic reside on the client side making it more vulnerable to
hacking.

Increased network bandwidth is needed to accommodate many
calls to the server, which can impose scalability restrictions.

Maintenance and upgrades of client applications are extremely
difficult because each client has to be maintained separately.

Client-server architecture suits mostly database-oriented
standalone applications and does not target robust reusable
component-oriented applications.

CORBA

Common Object Request Broker Architecture

iIndustry wide, open standard initiative, developed by the Object
Management Group (OMG)

differs from the traditional client/server model:

o it provides an object-oriented solution that does not enforce any
proprietary protocols or any particular programming language,
operating system, or hardware platform

Interface Definition Language (IDL) is a specific interface
language designed to expose the services (methods/functions) of
a CORBA remote object.

defines a collection of system-level services for handling low-
level application services like life-cycle, persistence, transaction,
naming, security, and so forth.

ORB

Object Request Broker

IS an object bus that provides a transparent mechanism for
sending requests and receiving responses to and from objects,
regardless of the environment and its location.

intercepts the client’s call and is responsible for finding its server
object that implements the request, passes its parameters,
Invokes its method, and returns its results to the client.

provides interfaces to the CORBA services, which allows it to
build custom-distributed application environments.

CORBA 2.0 added interoperability between different ORB
vendors by implementing an Internet Inter-ORB Protocol (IIOP):

o IOP defines the ORB backbone, through which other ORBs can
bridge and provide interoperation with its associated services.

CORBA architectural model

IDL contracts to specify the application boundaries and to establish interfaces with its

clients
ORB acts as the object bus or the bridge, providing the communication infrastructure

to send and receive request/responses from the client and server.

C CH+ Java C CH+ |ava
IDLJ IDLJ IDLJ
Client Stubs ‘ ‘ Server Skeletons ‘
Y A 4

< CORBA - ORB (Object Bus) >

CORBA advantages

OS and programming-language
iIndependence.

_egacy and custom application integration.
Rich distributed object infrastructure.
_ocation transparency.

Network transparency.

Dynamic invocation interface.

CORBA disadvantages

High initial investment. CORBA-based
applications require huge investments in regard to
new training and the deployment of architecture,
even for small-scale applications.

Availability of CORBA services. The Object
services specified by the OMG are still lacking as
Implementation products.

Scalability. Due to the tightly coupled nature of the
connection-oriented CORBA architecture, very high
scalability expected in enterprise applications may
not be achieved.

Java RMI

enables object-oriented distributed computing

developed by Sun Microsystems as the
standard mechanism to enable distributed
Java objects-based application development

allows to call remote Java objects and
passing them as arguments or return values.

It uses Java object serialization—a
lightweight object persistence technigue that
allows the conversion of objects into streams.

RMI architectural model (1)

a registry (rmiregistry)-oriented mechanism provides
a simple non-persistent naming lookup service that
IS used to store the remote object references and to
enable lookups from client applications

Java Remote Method Protocol (JRMP) is the inter-
process communication protocol, enabling Java
objects living in different Java VMSs to transparently
iInvoke one another’'s methods

a reference-counting garbage collection mechanism
keeps track of external live object references to
remote objects (live connections) using the VM

RMI architectural model (2)

RMI client: Java applet / stand-alone application,
o performs the remote method invocations on a server object;
o pass arguments that are primitive data types or serializable objects.

RMI stub: the client proxy

o generated by the RMI compiler (rmic in JDK)

o encapsulates the network info of the server

o performs the delegation of the method
invocation to the server.

o marshals the method arguments and

o unmarshals the return values from the
method execution.

RMI infrastructure with two layers:

o the remote reference layer

separates out the specific remote reference behavior from the client
stub;

handles certain reference semantics like connection retries, which
are unicast/multicast of the invocation requests;

o the transport layer facilitates
the actual data transfer during method invocations,
the passing of formal arguments, and
the return of back execution results.

Java RMI RMI Java RMI
Client Stubs Skeleton Server

Remote Ref. Layer ! Remote Ref. Layer

RMI architectural model (3)

RMI skeleton:

a
a

generated using the RMI compiler (rmic)

receives the invocation requests from
the stub and

processes the arguments
(unmarshalling) and

Java
Client

delegates them to the RMI server.

RMI
Stubs

RMI Java RMI
Skeleton Server

marshals the return values and passes
them back to the RMI stub via the RMI
infrastructure.

RMI server: the Java remote object
that

a

implements the exposed interfaces and
executes the client requests

receives incoming remote method
invocations from the respective
skeleton, which passes the parameters
after unmarshalling.

return values are sent back to the
skeleton, which passes them back to
the client via the RMI infrastructure.

Remote Ref. Layer

Remote Ref. Layer

Advantages of Java RMI

Developing distributed applications in RMI is simpler than
developing with Java sockets: there is no need to design a
protocol

RMI is built over TCP/IP sockets, but the added advantage is that
it provides an object-oriented approach for inter-process
communications.

provides an efficient, transparent communication mechanism that
frees the programmers of all the application-level protocols
necessary to encode and decode messages for data exchange.

RMI enables distributed resource management, best processing
power usage, and load balancing in a Java application model.

RMI-IIOP (RMI over [IOP): protocol developed for enabling RMI
applications to interoperate with CORBA components.

Disadvantages of Java RMI

RMI is limited only to the Java platform.

o It does not provide language independence in its
distributed model as targeted by CORBA.

RMI-based application architectures are tightly

coupled because of the connection-oriented nature.

o Achieving high scalability in such an application model
becomes a challenge.

RMI does not provide any specific session

management support.

o In atypical client/server implementation, the server has to
maintain the session and state information of the multiple
clients who access |it.

o Maintaining such information within the server application
with-out a standard support is a complex task.

Microsoft DCOM

Microsoft Component Object Model (COM)

a way for Windows-based software
components to communicate with each other
by defining a binary and network standard in
a Windows operating environment.

enables COM applications to communicate
with each other using an RPC mechanism,
which employs a DCOM protocol

skeleton and stub approach
the stub

o encapsulates the network
location information of the
COM server object and

0 acts as a proxy on the client
side.

the servers

o can potentially host multiple
COM objects,

o register themselves against a
registry,

clients discover servers using a

lookup mechanism

Architectural model of Microsoft DCOM

Advantages and disadvantages of DCOM

successful in providing distributed computing
support on the Windows platform.

Common limitations of DCOM:

o Platform lock-in : limited to Microsoft application
environments

o State management
o Scalability
o Complex session management issues

Message-Oriented Middleware (MOM)

CORBA, RMI, and DCOM adopted a tightly coupled mechanism
of a synchronous communication model (request/response).

MOM is based upon a loosely coupled asynchronous
communication model

o the application client does not need to know its application
recipients or its method arguments.

Enables applications to communicate indirectly using a
messaging provider queue.

o The application client sends messages to the message queue (a
message holding area), and

o The receiving application picks up the message from the queue.

o The application sending messages to another application
continues to operate without waiting for the response from that
application.

MOM-based architectural model

applications interacting with its messaging
Infrastructure use custom adapters.

for reliable message delivery, messages can be
persisted in a database/file system as well.

MOM
Appli;ation Adapter API iEssTLctare Adapter AP Appligation

\ /

MOM Implementations and limitations

SUunONE Message Queue, IBM MQSeries, TIBCO, SonicMQ, and
Microsoft Messaging Queue (MSMQ).

JMS: Java Message Service, Is developed as part of the Sun Java
Community Process (JCP) and also is currently part of the J2EE
o JMS provides Point-to-Point and Publish/Subscribe messaging models

with the following features: complete transactional capabilities, reliable
message delivery, security.

Common challenges while implementing a MOM-based application

environment :

o Most of the standard MOM implementations have provided native
APIs for communication with their core infrastructure

this has affected the portability of applications across such
implementations and has led to a specific vendor lock-in.

o The MOM messages used for integrating applications are usually
based upon a proprietary message format without any standard
compliance.

Common Challenges in Distributed Computing

Context:

o CORBA, RMI, and DCOM successful in integrating applications within a
homogenous environment inside a LAN

o Internet scale demands the interoperability of applications across networks

Maintenan_ce of various versions of stubs/skeletons in the client and
server environments is extremely complex in a heterogeneous network
environment

Quality of Service (QoS) goals like Scalability, Performance, and
Availability in a distributed environment consume a major portion of the
application’s development time.

Interoperability of applications implementing different protocols on
heterogeneous platforms almost becomes impossible

o E.g. a DCOM client communicating to an RMI server or an RMI client
communicating to a DCOM server.

Most of these protocols are designed to work well within local networks
o They are not very firewall friendly or able to be accessed over the Internet.

(L]

Towards Internet scale and role of J2I

Internet-based enterprise application model:

o the focus is moved the complex business processing toward centralized
servers in the back end (cloud computing?)

first generation of Internet servers:

o based upon Web servers that hosted static Web pages
o provided content to the clients via HTTP (HyperText Transfer Protocol).

second generation: server-side scripting

third generation: business-to-business (B2B) and business-to-
consumer (B2C) on Internet

In this context J2EE

o provides a programming model based upon Web and business components
that are managed by the J2EE application server.

o the application server consists of many APIs and low-level services available
to the components.

o low-level services provide security, transactions, connections and instance
pooling, and concurrency services,

which enable a J2EE developer to focus primarily on business logic rather than
plumbing.

Typical J2EE architecture

Three logical tiers
Presentation tier composed of Web

components, which handle

d
d
d
d

CLIENTS

HTTP requests/responses,
Session management,
Device independent content delivery, and ERESENTATION

the invocation of business tier components.

Application tier (Business tier) deals with the #FHcAtoN
core business logic processing (workflow &
automation). INTEGRATION

a

retrieve data from the information systems with

well-defined APIs provided by the application

server.

Integration tier deals with connecting and
communicating to

a

a
a
a

back-end Enterprise Information Systems (EIS),
database applications and

legacy applications,

or mainframe applications.

Applets/

Applications

IOP

J2EE Server

WEB CONTAINER

EJB CONTAINER

SQL/IDBC

]
Ry S

|

Lo

LEGACY
APPLICATIONS

Role of XML in Distributed Computing

Extensible Markup Language (XML)
Defines portable data in a structured and self-describing format

Embraced by the industry as a communication medium for electronic
data exchange.

o Has been widely adopted and accepted as a standard by major
vendors in the IT industry, including Sun, IBM, Microsoft, Oracle, HP.

o Provides a new way of application-to-application communication on
the Internet.

Promotes inter-operability between applications
Enhances the scalability of the underlying applications

Promotes a new form of the distributed computing technology
solution referred to as Web services.

