
Distributed Systems – Technology

1. Modern Technologies for Distributed Applications

Two-tier architecture model

 Dominated the early years of distributed application
architecture

 Client-server architecture
 the first (upper) tier handles the presentation and business

logic of the user application (client),

 the second/lower tier handles the application organization
and its data storage (server).

 Widely used in
 enterprise resource planning,

 billing,

 inventory application systems (client business applications
residing in multiple desktop systems interact with a central
database server).

Common limitations of the client-server

application model

 Complex business processing at the client side demands robust
client systems.

 Security is more difficult to implement because the algorithms
and logic reside on the client side making it more vulnerable to
hacking.

 Increased network bandwidth is needed to accommodate many
calls to the server, which can impose scalability restrictions.

 Maintenance and upgrades of client applications are extremely
difficult because each client has to be maintained separately.

 Client-server architecture suits mostly database-oriented
standalone applications and does not target robust reusable
component-oriented applications.

CORBA

 Common Object Request Broker Architecture

 industry wide, open standard initiative, developed by the Object
Management Group (OMG)

 differs from the traditional client/server model:

 it provides an object-oriented solution that does not enforce any
proprietary protocols or any particular programming language,
operating system, or hardware platform

 Interface Definition Language (IDL) is a specific interface
language designed to expose the services (methods/functions) of
a CORBA remote object.

 defines a collection of system-level services for handling low-
level application services like life-cycle, persistence, transaction,
naming, security, and so forth.

ORB

 Object Request Broker

 is an object bus that provides a transparent mechanism for
sending requests and receiving responses to and from objects,
regardless of the environment and its location.

 intercepts the client’s call and is responsible for finding its server
object that implements the request, passes its parameters,
invokes its method, and returns its results to the client.

 provides interfaces to the CORBA services, which allows it to
build custom-distributed application environments.

 CORBA 2.0 added interoperability between different ORB
vendors by implementing an Internet Inter-ORB Protocol (IIOP):

 IIOP defines the ORB backbone, through which other ORBs can
bridge and provide interoperation with its associated services.

CORBA architectural model

 IDL contracts to specify the application boundaries and to establish interfaces with its

clients

 ORB acts as the object bus or the bridge, providing the communication infrastructure

to send and receive request/responses from the client and server.

CORBA advantages

 OS and programming-language

independence.

 Legacy and custom application integration.

 Rich distributed object infrastructure.

 Location transparency.

 Network transparency.

 Dynamic invocation interface.

CORBA disadvantages

 High initial investment. CORBA-based
applications require huge investments in regard to
new training and the deployment of architecture,
even for small-scale applications.

 Availability of CORBA services. The Object
services specified by the OMG are still lacking as
implementation products.

 Scalability. Due to the tightly coupled nature of the
connection-oriented CORBA architecture, very high
scalability expected in enterprise applications may
not be achieved.

Java RMI

 enables object-oriented distributed computing

 developed by Sun Microsystems as the

standard mechanism to enable distributed

Java objects-based application development

 allows to call remote Java objects and

passing them as arguments or return values.

 it uses Java object serialization—a

lightweight object persistence technique that

allows the conversion of objects into streams.

RMI architectural model (1)

 a registry (rmiregistry)-oriented mechanism provides
a simple non-persistent naming lookup service that
is used to store the remote object references and to
enable lookups from client applications

 Java Remote Method Protocol (JRMP) is the inter-
process communication protocol, enabling Java
objects living in different Java VMs to transparently
invoke one another’s methods

 a reference-counting garbage collection mechanism
keeps track of external live object references to
remote objects (live connections) using the VM

RMI architectural model (2)
 RMI client: Java applet / stand-alone application,

 performs the remote method invocations on a server object;

 pass arguments that are primitive data types or serializable objects.

 RMI stub: the client proxy
 generated by the RMI compiler (rmic in JDK)

 encapsulates the network info of the server

 performs the delegation of the method

invocation to the server.

 marshals the method arguments and

 unmarshals the return values from the

method execution.

 RMI infrastructure with two layers:
 the remote reference layer

 separates out the specific remote reference behavior from the client
stub;

 handles certain reference semantics like connection retries, which
are unicast/multicast of the invocation requests;

 the transport layer facilitates
 the actual data transfer during method invocations,

 the passing of formal arguments, and

 the return of back execution results.

RMI architectural model (3)
 RMI skeleton:

 generated using the RMI compiler (rmic)

 receives the invocation requests from
the stub and

 processes the arguments
(unmarshalling) and

 delegates them to the RMI server.

 marshals the return values and passes
them back to the RMI stub via the RMI
infrastructure.

 RMI server: the Java remote object
that
 implements the exposed interfaces and

executes the client requests

 receives incoming remote method
invocations from the respective
skeleton, which passes the parameters
after unmarshalling.

 return values are sent back to the
skeleton, which passes them back to
the client via the RMI infrastructure.

Advantages of Java RMI

 Developing distributed applications in RMI is simpler than
developing with Java sockets: there is no need to design a
protocol

 RMI is built over TCP/IP sockets, but the added advantage is that
it provides an object-oriented approach for inter-process
communications.

 provides an efficient, transparent communication mechanism that
frees the programmers of all the application-level protocols
necessary to encode and decode messages for data exchange.

 RMI enables distributed resource management, best processing
power usage, and load balancing in a Java application model.

 RMI-IIOP (RMI over IIOP): protocol developed for enabling RMI
applications to interoperate with CORBA components.

Disadvantages of Java RMI

 RMI is limited only to the Java platform.
 It does not provide language independence in its

distributed model as targeted by CORBA.

 RMI-based application architectures are tightly
coupled because of the connection-oriented nature.
 Achieving high scalability in such an application model

becomes a challenge.

 RMI does not provide any specific session
management support.
 In a typical client/server implementation, the server has to

maintain the session and state information of the multiple
clients who access it.

 Maintaining such information within the server application
with-out a standard support is a complex task.

Microsoft DCOM

 Microsoft Component Object Model (COM)

 a way for Windows-based software

components to communicate with each other

by defining a binary and network standard in

a Windows operating environment.

 enables COM applications to communicate

with each other using an RPC mechanism,

which employs a DCOM protocol

Architectural model of Microsoft DCOM

 skeleton and stub approach

 the stub

 encapsulates the network
location information of the
COM server object and

 acts as a proxy on the client
side.

 the servers

 can potentially host multiple
COM objects,

 register themselves against a
registry,

 clients discover servers using a
lookup mechanism

Advantages and disadvantages of DCOM

 successful in providing distributed computing

support on the Windows platform.

 Common limitations of DCOM:

 Platform lock-in : limited to Microsoft application

environments

 State management

 Scalability

 Complex session management issues

Message-Oriented Middleware (MOM)

 CORBA, RMI, and DCOM adopted a tightly coupled mechanism
of a synchronous communication model (request/response).

 MOM is based upon a loosely coupled asynchronous
communication model

 the application client does not need to know its application
recipients or its method arguments.

 Enables applications to communicate indirectly using a
messaging provider queue.

 The application client sends messages to the message queue (a
message holding area), and

 The receiving application picks up the message from the queue.

 The application sending messages to another application
continues to operate without waiting for the response from that
application.

MOM-based architectural model

 applications interacting with its messaging

infrastructure use custom adapters.

 for reliable message delivery, messages can be

persisted in a database/file system as well.

MOM Implementations and limitations

 SunONE Message Queue, IBM MQSeries, TIBCO, SonicMQ, and
Microsoft Messaging Queue (MSMQ).

 JMS: Java Message Service, is developed as part of the Sun Java
Community Process (JCP) and also is currently part of the J2EE
 JMS provides Point-to-Point and Publish/Subscribe messaging models

with the following features: complete transactional capabilities, reliable
message delivery, security.

 Common challenges while implementing a MOM-based application
environment :
 Most of the standard MOM implementations have provided native

APIs for communication with their core infrastructure
 this has affected the portability of applications across such

implementations and has led to a specific vendor lock-in.

 The MOM messages used for integrating applications are usually
based upon a proprietary message format without any standard
compliance.

Common Challenges in Distributed Computing

 Context:
 CORBA, RMI, and DCOM successful in integrating applications within a

homogenous environment inside a LAN

 Internet scale demands the interoperability of applications across networks

 Maintenance of various versions of stubs/skeletons in the client and
server environments is extremely complex in a heterogeneous network
environment

 Quality of Service (QoS) goals like Scalability, Performance, and
Availability in a distributed environment consume a major portion of the
application’s development time.

 Interoperability of applications implementing different protocols on
heterogeneous platforms almost becomes impossible
 E.g. a DCOM client communicating to an RMI server or an RMI client

communicating to a DCOM server.

 Most of these protocols are designed to work well within local networks
 They are not very firewall friendly or able to be accessed over the Internet.

Towards Internet scale and role of J2EE

 Internet-based enterprise application model:
 the focus is moved the complex business processing toward centralized

servers in the back end (cloud computing?)

 first generation of Internet servers:
 based upon Web servers that hosted static Web pages

 provided content to the clients via HTTP (HyperText Transfer Protocol).

 second generation: server-side scripting

 third generation: business-to-business (B2B) and business-to-
consumer (B2C) on Internet

 In this context J2EE
 provides a programming model based upon Web and business components

that are managed by the J2EE application server.

 the application server consists of many APIs and low-level services available
to the components.

 low-level services provide security, transactions, connections and instance
pooling, and concurrency services,
 which enable a J2EE developer to focus primarily on business logic rather than

plumbing.

Typical J2EE architecture

Three logical tiers

 Presentation tier composed of Web
components, which handle
 HTTP requests/responses,

 Session management,

 Device independent content delivery, and

 the invocation of business tier components.

 Application tier (Business tier) deals with the
core business logic processing (workflow &
automation).
 retrieve data from the information systems with

well-defined APIs provided by the application
server.

 Integration tier deals with connecting and
communicating to
 back-end Enterprise Information Systems (EIS),

 database applications and

 legacy applications,

 or mainframe applications.

Role of XML in Distributed Computing

 Extensible Markup Language (XML)

 Defines portable data in a structured and self-describing format

 Embraced by the industry as a communication medium for electronic
data exchange.

 Has been widely adopted and accepted as a standard by major
vendors in the IT industry, including Sun, IBM, Microsoft, Oracle, HP.

 Provides a new way of application-to-application communication on
the Internet.

 Promotes inter-operability between applications

 Enhances the scalability of the underlying applications

 Promotes a new form of the distributed computing technology
solution referred to as Web services.

