
1

Distributed systems – Theory

8. Distributed mutual exclusion

2

The problem

 Remember:

 when a process has to read or update certain shared data

structures, it enters a critical region to achieve mutual

exclusion & ensure that no other process will use the

shared data structures at the same time.

 In single-processor systems:

 critical regions are protected using semaphores, monitors,

and similar constructs.

 How critical regions and mutual exclusion can be

implemented in distributed systems?

3

Centralized Algorithm

 Simulate how it is done in a one-processor system.

 One process is elected as the coordinator
 e.g. the one running on the machine with the highest

network address

 Whenever a process wants to enter a critical region,
it sends a request message to the coordinator
stating which critical region it wants to enter and
asking for permission.

 If no other process is currently in that critical region,
the coordinator sends back a reply granting
permission

 When the reply arrives, the requesting process
enters the critical region.

4

Centralized alg. - example

 Process 1 asks the coordinator for permission to enter a critical region. Permission is granted.

 Another process 2 asks for permission to enter the same critical region.

 The coordinator knows that a different process is already in the critical region, so it cannot grant
permission.

 The exact method used to deny permission is system dependent.
 (b): the coordinator just refrains from replying, thus blocking process 2, which is waiting for a reply.

 Alternatively, it could send a reply saying "permission denied."

 Either way, it queues the request from 2 for the time being.

 When process 1 exits the critical region, it sends a message to the coordinator releasing its
exclusive access - (c)

 The coordinator takes the first item off the queue of deferred requests and sends that process a
grant message.
 If the process was still blocked (i.e. this is the first message to it), it unblocks and enters the critical region.

 If an explicit message has already been sent denying permission, the process will have to poll for incoming
traffic, or block later.

 Either way, when it sees the grant, it can enter the critical region.

5

Centralized Algorithm – pro and cons

 Guarantees:
 mutual exclusion: the coordinator only lets 1 process at a time into each critical reg.

 It is also fair, since requests are granted in the order in which they are received.

 No process ever waits forever (no starvation).

 The scheme is easy to implement, too, and requires only three messages per
use of a critical region (request, grant, release).

 It can also be used for more general resource allocation rather than just
managing critical regions.

 Shortcomings:
 The coordinator is a single point of failure, so if it crashes, the entire system may go

down.

 If processes normally block after making a request, they cannot distinguish a dead
coordinator from "permission denied" since in both cases no message comes back.

 In a large system, a single coordinator can become a performance bottleneck.

6

Distr. Alg. of Ricart & Agrawala

 Requires that there be a total ordering of all events in the system:

 For any pair of events, such as messages, it must be unambiguous
which one happened first.

 Lamport's algorithm is one way to achieve this ordering and can be
used to provide time-stamps for distributed mutual exclusion.

 When a process wants to enter a critical region,

1. it builds a message containing the name of the critical region it
wants to enter, its process number, and the current time.

2. It then sends the message to all other processes, conceptually
including itself.

 The sending of messages is assumed to be reliable; that is, every
message is acknowledged.

 Reliable group communication if available, can be used instead of
individual messages.

7

Distr. Alg. of Ricart & Agrawala

 When a process receives a request message from another process, the action it
takes depends on its state with respect to the critical region named in the message:

1. If the receiver is not in the critical region & does not want to enter it => sends back
an OK message to the sender.

2. If the receiver is already in the critical region => it does not reply + queues the
request.

3. If the receiver wants to enter the critical region but has not yet done so =>
 it compares the timestamp in the incoming message with the one contained in the

message that it has sent everyone.

 The lowest one wins:
 If the incoming message is lower, the receiver sends back an OK message.

 If its own message has a lower timestamp, the receiver queues the incoming request and sends
nothing.

 After sending out requests asking permission to enter a critical region,

=> process waits until everyone else has given permission.

 As soon as all the permissions are in,

=> process may enter the critical region.

 When it exits the critical region,

=> process sends OK messages to all processes on its queue

& deletes them all from the queue.

8

Example

 If there is no conflict, it clearly works.

 Suppose that two processes try to enter the same critical region
simultaneously:
 process 0 sends everyone a request with timestamp 8, while at the same time,

 process 2 sends everyone a request with timestamp 12.

 Process 1 is not interested in entering the critical region, so it sends OK to
both senders.

 Processes 0 and 2 both see the conflict and compare timestamps.
 Process 2 sees that it has lost, so it grants permission to by sending OK.

 Process 0
 queues the request from 2 for later processing and

 enters the critical region – (b)

 when it is finished, it removes the request from 2 from its queue

 sends an OK message to process 2, allowing the latter to enter its critical region - (c).

9

Pro and cons
 Mutual exclusion is guaranteed without deadlock or starvation.

 No. messages required per entry is now 2(n -1) where the total number of processes
in the system is n.

 No single point of failure exists – has been replaced by n points of failure!
 If any process crashes, it will fail to respond to requests.

 This silence will be interpreted (incorrectly) as denial of permission, thus blocking all
subsequent attempts by all processes to enter all critical regions.

 Probability of one of the n processes failing is n times as large as a single coordinator failing
=> replacement of a poor alg. with one that is worse & requires much more network traffic

 Patched up:
 When a request comes in, the receiver always sends a reply, either granting or denying

permission.

 Whenever either a request or a reply is lost, the sender times out and keeps trying until either
a reply comes back or the sender concludes that the destination is dead.

 After a request is denied, the sender should block waiting for a subsequent OK message.

 Another problem:
 either a group communication primitive must be used, or

 each process must maintain the group membership list itself, including processes entering
the group, leaving the group, and crashing.

=> the method works best with small groups of processes that never change their group
memberships.

 All processes are involved in all decisions concerning entry into critical regions.
 If one process is unable to handle the load, it is unlikely that forcing everyone to do exactly

the same thing in parallel is going to help much.

10

Minor improvements

 Example:

 getting permission from everyone to enter a critical region

is really overkill => ? method to prevent two processes from

entering the critical region at the same time.

 Allow a process to enter a critical region when it has

collected permission from a simple majority of the other

processes, rather than from all of them.

 Conclusions:

 proposed alg. is slower, more complicated, more

expensive, and less robust that the original centralized one.

11

Token Ring Algorithm

 Assume:
 bus network, with no inherent ordering of the processes.

 a logical ring is constructed in which each process is assigned a position
in the ring

 The ring positions may be allocated in numerical order of network
addresses or some other means.

 It does not matter what the ordering is.

 All that matters is that each process knows who is next in line after itself.

12

Token Ring Algorithm

 When the ring is initialized, process 0 is given a token.

 The token circulates around the ring.

 It is passed from process k to process k+1 (modulo the ring size) in point-
to-point messages.

 When a process acquires the token from its neighbor,
 It checks to see if it is attempting to enter a critical region.

 If so,
1. the process enters the region,

2. does all the work it needs to,

3. leaves the region.

4. After it has exited, it passes the token along the ring.

 If not,
1. it just passes it along [=> when no processes want to enter any critical regions, the

token just circulates at high speed around the ring]

 It is not permitted to enter a second critical region using the same token.

13

Pro and cons

 Correctness: only one process has the token at any instant, so only one process
can be in a critical region.

 Since the token circulates among the processes in a well-defined order,
starvation cannot occur.

 Once a process decides it wants to enter a critical region, at worst it will have to
wait for every other process to enter and leave one critical region.

 Problems:
 If the token is ever lost, it must be regenerated.

 Detecting that it is lost is difficult, since the amount of time between successive
appearances of the token on the network is unbounded.

 The fact that the token has not been spotted for an hour does not mean that it has been
lost; somebody may still be using it.

 The algorithm also runs into trouble if a process crashes, but recovery is easier
than in the other cases.
 If we require a process receiving the token to acknowledge receipt, a dead process will

be detected when its neighbor tries to give it the token and fails.

 At that point the dead process can be removed from the group, and the token holder
can throw the token over the head of the dead process to the next member down the
line, or the one after that, if necessary.

 Doing so requires that everyone maintains the current ring configuration.

14

A Comparison of the Three Algorithms

Algorithm Messages Delay before entry Problems

Centralized 3 2 Coordinator crash

Distributed 2(n-1) 2(n-1) Crash of any process

Token ring 1 to infinity 0 to n -1 Lost token, process crash

Messages:

 The centralized algorithm is simplest and also most efficient:
 requires only three messages to enter and leave a critical region: a request and a

grant to enter, and a release to exit.

 The distributed algorithm
 requires n -1 request messages, one to each of the other processes,

 and an additional n -1 grant messages

 With the token ring algorithm, the number is variable.
 If every process constantly wants to enter a critical region, then each token pass

will result in one entry and exit, for an average of one message per critical region
entered.

 At the other extreme, the token may sometimes circulate for hours without
anyone being interested in it => no. messages per entry into a critical region is
unbounded.

15

A Comparison of the Three Algorithms

 Delay from the moment a process needs to enter a critical region
until its actual entry also varies for the 3 algorithms:
 When critical regions are short and rarely used, the dominant

factor in the delay is the actual mechanism for entering a critical
region.

 When they are long and frequently used, the dominant factor is
waiting for everyone else to take their turn.

 It takes only 2 message times to enter a critical region in the
centralized case, and 2(n -1) message times in the distrib. case,
 assuming that the network can handle only one message at a time.

 For the token ring, the time varies from 0 (token just arrived) to n-1
(token just departed).

 Event of crashes.
 Distributed algorithms are even more sensitive to crashes than the

centralized one.

 In a fault-tolerant system, none of these would be suitable, but if
crashes are very infrequent, they are all acceptable.

