
1

Distributed systems – theory

7. Algs for clock synchronization

2

Goals and assumptions

 Ass. 1: one machine has a UTC receiver,

 Goal: keeping all the other machines synchronized to it.

 Ass. 1’: machines have UTC receivers, each machine keeps track
of its own time

 Goal: keep all the machines together as well as possible

 Ass. 2: Each machine is assumed to have a timer that causes an
interrupt H times a second.

 When this timer goes off, the interrupt handler adds 1 to a software
clock that keeps track of the number of ticks (interrupts) since some
agreed-upon time in the past.

 Let us call the value of this clock C.

 When the UTC time is t, the value of the clock on machine p is Cp(t).

 In a perfect world, we would have Cp(t) = t for all p and all t. In other
words, dC/dt ideally should be 1.

3

Drift rate

 Real timers do not interrupt exactly H times a
second.
 Theoretically, a timer with H = 60 should

generate 216,000 ticks per hour.

 In practice, the relative error obtainable with
modem timer chips is about meaning that a
particular machine can get a value in the range
215,998 to 216,002 ticks per hour.

 If there exists some constant such that

1-r<=dC/dt<1+r

the timer can be said to be working within its
specification.

 The constant r is specified by the
manufacturer and is known as the maximum
drift rate.

4

Synchronization

 If two clocks are drifting from UTC in the opposite

direction, at a time dt after they were synchronized, they

may be as much as 2 r dt.

 If the DS designers want to guarantee that no two clocks

ever differ by more than d, clocks must be

resynchronized (in software) at least every d/2r seconds.

 The various algorithms differ in precisely how this

resynchronization is done.

5

Cristian's Algorithm – principle

 Assume: DS in which one
machine has a UTC receiver
 Let us call the machine with the

receiver a time server.

 Goal is to have all the other
machines stay synchronized with
it.

 Periodically, certainly no more
than every d/2r seconds, each
machine sends a message to
the time server asking it for the
current time.

 The time server CUTC as fast as
it can with a message containing
its current time.

 When the sender gets the reply,
it can just set its clock to CUTC.

6

Cristian's Algorithm – problems

 The algorithm has two problems:

 major problem: is that time must never run backward

 if the sender's clock is fast, will be smaller than the sender's

current value of C.

 e.g. problems: an object file compiled just after the clock

change having a time earlier than the source which was

modified just before the clock change.

 minor problem: is that it takes a nonzero amount of time for

the time server's reply to get back to the sender.

 this delay may be large and vary with the network load.

7

Dealing with the major problem

 The change must be introduced gradually.

 One way is as follows:

 Suppose that the timer is set to generate 100 interrupts per

second.

 Normally, each interrupt would add 10 msec to the time.

 When slowing down, the interrupt routine adds only 9 msec

each time, until the correction has been made.

 Similarly, the clock can be advanced gradually by adding 11

msec at each interrupt instead of jumping it forward all at once.

8

Dealing with the minor problem

 Cristian's way of dealing: attempt to measure the network delay.

 The sender record accurately the interval between sending the
request to the time server and the arrival of the reply.

 The starting time, T0 and the ending time, T1, are measured
using the same clock,

 the interval will be relatively accurate, even if the sender's clock is
off from UTC by a substantial amount.

 In the absence of any other the best estimate of the message
propagation time is (T1-T0)/2.

 When the reply comes in, the value in the message can be
increased by this amount to give an estimate of the server's
current time.

 If the theoretical minimum propagation time is known, other
properties of the time estimate can be calculated.

9

Improving the delay estimation

 The estimate can be improved if it is known approximately how long it takes
the time server to handle the interrupt and process the incoming message.

 Let us call the interrupt handling time I.

 The amount of the interval from T0 to T1 that was devoted to message
propagation is T1- T0-I so the best estimate of the one-way propagation
time is half this.

 But … Systs do exist in which messages from A to B systematically take a
different route than messages from B to A, and thus have a different
propagation time.

 To improve the accuracy, Cristian suggested making not one measurement,
but a series of them.
 Any measurements in which T1- T0 exceeds some threshold value are discarded

as being victims of network congestion and thus unreliable.

 The estimates derived from the remaining probes can then be averaged to get a
better value.

 Alternatively, the message that came back fastest can be taken to be the most
accurate since it presumably encountered the least traffic underway and thus is
the most representative of the pure propagation time.

10

Berkeley Algorithm (1/2)

 Cristian's algorithm: the time server is passive.

 Other machines ask it for the time periodically.

 All it does is respond to their queries.

 Berkeley algorithm: the opposite approach is taken

 Here the time server (actually, a time daemon) is active, polling every

machine periodically to ask what time it is there.

 Based on the answers, it computes an average time and tells all the

other machines to advance their clocks to the new time or slow their

clocks down until some specified reduction has been achieved.

 This method is suitable for a system in which no machine has a UTC

receiver.

 The daemon's time must be set manually by the operator periodically.

11

Berkeley Algorithm (2/2)

a) At 3:00, the time daemon tells the other machines
its time and asks for theirs.

b) They respond with how far ahead or behind the time
daemon they are.

c) Armed with these numbers, the time daemon
computes the average and tells each machine how
to adjust its clock

12

Averaging Algorithms
 Both methods described above are centralized, with the usual disadvant.

 Decentralized algorithms are also known!

 One class of decentralized clock synchronization algorithms works by
dividing time into fixed-length resynchronization intervals.

 The ith interval starts at T0+iR and runs until T0+ (i+1)R where T0 is an
agreed upon moment in the past, and R is a system parameter.

 At the beginning of each interval, every machine broadcasts the current
time according to its clock.

 Because the clocks on different machines do not run at exactly the same
speed, these broadcasts will not happen precisely simultaneously.

 After a machine broadcasts its time, it starts a local timer to collect all other
broadcasts that arrive during some interval S.

 All the broadcasts arrive, thencompute a new time from them
1. The simplest algorithm is just to average the values from all the other machines.

2. A slight variation on this theme is first to discard the m highest and m lowest values,
and average the rest

3. Another variation is to try to correct each message by adding to it an estimate of the
propagation time from the source.

13

Multiple External Time Sources
 For systems in which extremely accurate synchronization with UTC is

required, it is possible to equip the system with multiple receivers

 Due to inherent inaccuracy in the time source itself + fluctuations in
the signal path, the best the DS can do is establish a range (time
interval) in which UTC falls.

 In general, the various time sources will produce different ranges,
which requires the machines attached to them to come to agreement.

 To reach this agreement, each processor with a UTC source can
broadcast its range periodically, eg at precise start of each UTC min.

 None of the processors will get the time packets instantaneously.

 Worse yet, the delay between transmission and reception depends on
the cable distance and no. of gateways that the packets have to
traverse, which is different for each (UTC source, processor) pair.

 Other factors can also play a role, such as delays due to collisions
when multiple machines try to transmit simultaneous on a network.

 If a processor is busy handling a previous packet, it may not even
look at the time packet for a considerable number of milliseconds,
introducing additional uncertainty into the time.

