
Distributed systems – theory

5. Group communications

Group communications

 RPC: two parties, client and server

 Counter-example: a group of file servers
cooperating to offer a single, fault-tolerant file
system

 the client send a message to all the servers, to
make sure that the request could be carried out
even if one of them crashed

 RPC cannot handle communication from one
sender to many receivers (other than by
performing separate RPCs with each one)

Groups

 = collection of processes that act together in some system or user-
specified way.

 Aim: allow process to deal with collections of processes as a single
abstraction -> a process can send a message to a group of servers
without having to know how many there are or where they are, which may
change from one call to the next

 Key property: when a message is sent to the group itself, all members of
the group receive it

 form of one-to-many communication and is contrasted with point-to-
point communication.

 Dynamicity (analogy with social organization !)

 New groups can be created and old groups can be destroyed.

 A process can join a group or leave one.

 A process can be a member of several groups at the same time.

-> Mechanisms are needed for managing groups and group membership.

Implementations of group communications

1. Multicasting technique
 create a special network address (for example, indicated by setting

one of the high-order bits to 1), to which multiple machines can
listen.

 when a packet is sent to one of these addresses, it is automatically
delivered to all machines listening to the address.

 Implementing groups using multicast is straightforward: just assign
each group a different multicast address.

2. Broadcasting technique
 packets containing a certain address are delivered to all machines.

 broadcasting can also be used to implement groups, but it is less
efficient:
 each machine receives each broadcast, so its software must check to

see if the packet is intended for it.

 If not, the packet is discarded, but some time is wasted processing the
interrupt.

 it still takes only one packet to reach all the members of a group

Implementations of group communications

1. Multicasting

2. Broadcasting, if multicasting is not allowed

3. Unicasting (point-to-point transmission),

if mc or bc are not allowed
 sending of a message from a single sender to a single

receiver

 the sender transmit separate packets to each of the
members of the group.

 for a group with n members, n packets are required,
instead of one packet when either multicasting or
broadcasting is used

 although less efficient, this implementation is still
workable, especially if most groups are small.

Design of group communications
 As regular message passing:

 Buffered vs. unbuffered

 Blocking vs. unblocking

 Etc

 Additional choices

 Closed Groups versus Open Groups.

 Peer Groups versus Hierarchical Groups

 Other problems

 Group Membership

 Group Addressing

 Send and Receive Primitives

 Atomicity

 Message Ordering

 Overlapping Groups

 Scalability

Closed Groups vs Open Groups

 closed groups:
 in which only the members of the group can send to the

group.

 outsiders cannot send messages to the group as a whole,
although they may be able to send messages to individual
members

 Example: A collection of processes working together to
play a game of chess might form a closed group; they have
their own goal and do not interact with the outside world.

 open groups:
 any process in the system can send to any group

 Example: support replicated servers, it is important that
processes that are not members (clients) can send to the
group.

Peer Groups vs. Hierarchical Groups
 Peer Groups

 all the processes are equal.

 no process is boss and all decisions are made collectively

 peer group is symmetric and has no single point of failure.

 if one of the processes crashes, the group simply becomes smaller, but continue.

 Disadvantage: decision making is more complicated --to decide anything, a vote has
to be taken, incurring some delay and overhead

 Hierarchical Groups
 one process is the coordinator and all the others are workers.

 when a request for work is generated, either by an external client or by one of the
workers, it is sent to the coordinator who decides which worker is best suited to carry
it out & forwards it there

 loss of the coordinator brings the entire group to a grinding halt, but as long as it is
running, it can make decisions without bothering everyone else.

 E.g. a hierarchical group might be appropriate for a chess program:
 The coordinator takes the current board, generates all the legal moves from it, and farms

them out to the workers for evaluation.

 During this evaluation, new boards are generated and sent back to the coordinator to have
them evaluated.

 When a worker is idle, it asks the coordinator for a new board to work on.

 The coordinator controls the search strategy and prunes the game tree but leaves the actual
evaluation to the workers.

Group Membership

 some method is needed
 for creating and deleting groups, as well as

 for allowing processes to join and leave groups.

 Approaches:
1. have a group server to which all these requests can be

sent.

2. manage group membership in a distributed way.

 In an open group, an outsider can send a message to all
group members announcing its presence

 In a closed group, something similar is needed

 To leave a group, a member just sends a goodbye message
to everyone.

Group Addressing – approaches
1. Give each group a unique address, much like a process address.

 multicast allowed: the group address can be associated with a
multicast address,

 broadcast allowed: the message can be broadcast.

 only unicasting allowed: need a list of machines that have
processes belonging to the group.

2. Require the sender to provide an explicit list of all destinations.

3. Each message is sent to all members of the group using one of
the methods described above, but with a new twist:

 Each message contains a predicate (Boolean expression) to be
evaluated.

 The predicate can involve the receiver's machine number, its local
variables, or other factors.

 If the predicate evaluates to TRUE, the message is accepted.

 If it evaluates to FALSE, the message is discarded.

 Example: send a message to only those machines that have at
least 4M of free memory & are willing to take on a new process.

Send and Receive Primitives

1. Merge the two form of comm. : group & point2point?
 Send:

 Parameter -- destination

 A process address, a single message is sent to that one process.

 A group address (or a pointer to a list of destinations), a message
is sent to all members of the group

 Receive:

 completes when either a point-to-point message or a group
message arrives.

2. New library procedures:
 group-send

 group-receive

Atomicity

 desirable because it makes programming distributed
systems much easier.

 a process sends a message to the group, it does not
have to worry about what to do if some of them do
not get it

 Example – in a replicated distributed data base
system:
 a process sends a message to all the data base machines

to create a new record in the database

 The record is replicated in all copies

Message ordering
 Global time ordering:

 The best guarantee is to have all messages delivered
instantaneously and in the order in which they were sent.

 All recipients get all messages in exactly the same order.

 It conveniently ignoring the fact that there is no such thing as
absolute global time!

 Absolute time ordering is not always easy to implement! -> some
systems offer various watered-down variations. For example:

 Consistent time ordering:
 If two messages, say A and B, are sent close together in time, the

system picks one of them as being "first" and delivers it to all group
members, followed by the other.

 It may happen that the one chosen as first was not really first, but
since no one knows this, the argument goes, system behavior
should not depend on it.

 Messages are guaranteed to arrive at all group members in the
same order, but that order may not be the real order in which they
were sent.

Overlapping Groups

 Although there is a time ordering within each group,
there is not necessarily any coordination among multiple
groups

 Some systems support well-defined time ordering among
overlapping groups and others do not

 If the groups are disjoint, the issue does not arise.

 Implementing time ordering among different groups is
frequently difficult to do.

