
Distributed Systems – Theory

4. Remote Procedure Call

Client-server model vs. RPC

 Client-server:

 building everything around I/O

 all communication built in send/receive

 distributed computing look like centralized

computing

 RPC allow to call procedures located on

other machines

RPC principle

 When a process on machine A calls a
procedure on machine B,

 the calling process on A is suspended, and

 execution of the called procedure takes place on
B.

 Information can be transported from the caller
to the callee in the parameters and can come
back in the procedure result.

 No message passing or I/O at all is visible to
the programmer.

Problems

 calling and called procedures run on different

machines, they execute in different address

spaces, -> complications.

 Parameters and results also have to be

passed, which can be complicated, especially

if the machines are not identical.

 both machines can crash, and each of the

possible failures causes different problems

Basic RPC operation - steps

1. The client procedure calls the client stub in the normal way.

2. The client stub builds a message and traps to the kernel.

3. The kernel sends the message to the remote kernel.

4. The remote kernel gives the message to the server stub.

5. The server stub unpacks the parameters and calls the server.

6. The server does the work and returns the result to the stub.

7. The server stub packs it in a message and traps to the kernel.

8. The remote kernel sends the message to the client's kernel.

9. The client's kernel gives the message to the client stub.

10. The stub unpacks the result and returns to the client.

Parameter Passing (1)

 client stub: take the parameters, pack them into a
message, and send it to the server stub.

 packing parameters into a message is called
parameter marshaling.

 Example: sum(i,j): two integer parameters and
returns their arithmetic sum. The client stub:
 takes its two parameters and puts them in a message as

indicated.

 also puts the name or number of the procedure to be called
in the message because the server might support several
different calls, and it has to be told which one is required

 … (see the 10 steps)

Parameter Passing (2)

 Model works fine as long as the client and server
machines are identical and all the parameters and
results are scalar types, such as integers,
characters, and Booleans.

 Multiple machine type -> potential problems!
 Example: some machines (e.g. Intel), number their bytes

from right to left (format named little endian), whereas
others (e.g. Sun), number them the other way (format
named big endian*)

 Solution: a standard has been agreed upon for
representing each of the basic data types

*the format names are given after the politicians in Gulliver's Travels who
went to war over which end of an egg to break.

Using standards in parameter passing

 a network standard or canonical form for integers,
characters, Booleans, floating-point numbers,

 require all senders to convert their internal
representation to this form while marshaling

 Problem: sometimes inefficient
 Example: big endian to big endian marshalling into a lilttle

endian.

 Second approach: the client uses its own native
format and indicates in the first byte of the message
which format this is.
 server stub converts if needed

Where the stub procedures come from?

 in many RPC-based systems, they are generated automatically

 given a specification of the server procedure and the encoding
rules, the message format is uniquely determined

 a compiler read the server specification and generate a client
stub that packs its parameters into the officially approved
message format

 similarly, the compiler can also produce a server stub that
unpacks them and calls the server

 both stub procedures are generated from a single formal
specification of the server

 makes life easier for the programmers,

 reduces the chance of error

 makes the system transparent with respect to differences in
internal representation of data items.

Pointers and reference parameters? (1)

 Example: the client stub knows that the second

parameter points to an array of characters and it

knows how big the array is.

 First strategy:

 copy the array into the message and send it to the server.

 changes the server makes using the pointer (e.g. storing data

into it) directly affect the message buffer inside the server

stub.

 when the server finishes, the original message can be sent

back to the client stub, which then copies it back to the client.

 call-by-reference has been replaced by copy/restore.

Pointers and reference parameters? (2)
 Optimization:

 if the stubs know whether the buffer is an input parameter or
an output parameter to the server, one of the copies can be
eliminated.

 if the array is input to the server (e.g. in a call to write) it need
not be copied back.

 if it is output, it need not be sent over in the first place.

 the way to tell them is in the formal specification of the server
procedure.

 Formal specification of the procedure
 written in some kind of specification language,

 telling what the parameters are,

 which are input and which are output (or both),

 and what their (maximum) sizes are.

General case of a pointer to an arbitrary

data structure

 Example. A pointer to a complex graph.

 Approach:

 actually passing the pointer to the server stub and

generating special code in the server procedure for using

pointers.

 A pointer is dereferenced (put into a registry and indirect

through registry) by sending a message back to the client

stub asking it to fetch and send the item being pointed to

(reads) or store a value at the address pointed to (writes).

 Method highly inefficient:

 Imagine having the file server store the bytes in the buffer by

sending back each one in a separate message.

Why Dynamic Binding?

 Question: how the client locates the server?

 One method is just to the network address of
the server into the client.

 approach extremely inflexible!
 If the server moves or if the server is replicated or if the

interface changes, numerous programs will have to be
found and recompiled.

 To avoid all these problems, some DS use
what is dynamic binding to match up clients
and servers.

Server’s formal specification

 Example: the server with the specification that tells the name of the
server (e.g. file_server), the version number (e.g. 3.1), and a list of
procedures provided by the server (read, write, create, and delete).

 For each procedure, the types of the parameters are given.

 Each parameter is specified as being an in parameter, an out
parameter, or an in out parameter. The direction is relative to the server.

 An in parameter, such as the file name, is sent from the client to the
server.

 An out parameter such as buf in read, is sent from the server to the
client. Buf is the place where the file server puts the data that the client
has requested.

 An in-out parameter would be sent from the client to the server, modified
there, and then sent back to the client (copy/restore)

Binder and register

 When the server begins executing, the call to initialize outside the
main loop exports the server interface, i.e.:
 the server sends a message to a program called a binder, to make

its existence known.

 this process of sending the message is referred to as registering
the server.

 to register, the server gives the binder
 its name,

 its version number,

 a unique identifier, typically 32 bits long, and

 a handle used to locate it.
 The handle is system dependent, and might be an Ethernet address, an IP

address, an X.500 address, a sparse process identifier, or something else.

 other information, e.g. concerning authentication,

 A server can also deregister with the binder when it is no longer
prepared to offer service.

The binder interface

Call Input Output

Register Name,version,handle, unique id

Deregister Name,version,unique id

Lookup Name, version Handle, unique id

How the client locates the server
1. Calls one of the remote procedures for the first time, say, read,

2. The client stub sees that it is not yet bound to a server, so it sends
a message to the binder asking to import version 3.1 of the
file_server interface.

3. The binder checks to see if one or more servers have already
exported an interface with this name and version number.

4. If no currently running server is willing to support this interface, the
read call fails.

5. If a suitable server exists, the binder gives its handle and unique
identifier to the client stub.

6. The client stub uses the handle as the address to send the request
message to.

7. The message contains the parameters and the unique identifier,
which the server's kernel uses to direct the incoming message to
the correct server in the event that several servers are running on
that machine.

Dynamic binding: advantages vs. disadvantages
 Advantages:

 Can handle multiple servers that support the same interface.

 The binder can spread the clients randomly over the servers to even load.

 The binder can poll the servers periodically, automatically deregistering
any server that fails to respond, to achieve a degree of fault tolerance.

 The binder can also assist in authentication.
 A server could specify, for example, that it only wished to be used by a specific list

of users, in which case the binder would refuse to tell users not on the list about it.

 The binder can also verify that both client and server are using the same
version of the interface.

 Disadvantages:
 The extra overhead of exporting and importing interfaces costs time.

 Since many client processes are short lived and each process has to start
all over again, the effect may be significant.

 In a large DS, the binder may become a bottleneck,
 multiple binders are needed.

 whenever an interface is registered or deregistered, a substantial number of
messages will be needed to keep all the binders synchronized and up to date,
creating even more overhead.

Connection-oriented protocol vs.

connectionless protocol
 Connection-oriented protocol:

 at the time the client is bound to the server, a connection is
established between them.

 All traffic, in both directions, uses this connection.

 Advantage: communication becomes much easier.

 When a kernel sends a message, it does not have to worry about it
getting lost, nor does it have to deal with acknowledgements
(handled by the software that supports the connection)

 Disadvantage: the performance loss.

 All that extra software gets in the way.

 The main advantage (no lost packets) is hardly needed on a
LAN, since LANs are so reliable.

 As a consequence, most DS that are intended for use in a single
building or campus use connectionless protocols.

Remote Method Invocation (RMI)
 Invoke methods on remote objects (i.e., on

objects located on other systems)

 Networking details required by explicit
programming of streams and sockets disappear
and the fact that an object is located remotely is
almost transparent to the OO programmer

 The server program that has control of the
remote object registers an interface with a
naming service, thereby making this interface
accessible by client programs.

 The interface contains the signatures for those
methods of the object that the server wishes to
make publicly available.

 A client program can then use the same naming
service to obtain a reference to this interface in
the form of a stub.

 The stub is effectively a local surrogate (a
'stand-in' or placeholder) for the remote object.

 On the remote system, there will be another
surrogate, a skeleton.

Local machine Remote machine

Apparent invocation flow: Actual invocation flow:

RMI details

 When the client program invokes a method of the remote object,
it appears to the client as though the method is being invoked
directly on the object.

 An equivalent method is being called in the stub.

 The stub then forwards the call and any parameters to the
skeleton on the remote machine.

 In Java only primitive types and those reference types that
implement the Serializable interface may be used as parameters
- the serializing of these parameters is called marshalling.

 Upon receipt of the byte stream, the skeleton converts this
stream into the original method call and associated parameters
(the deserialization of parameters being referred to as
unmarshalling)

 Finally, the skeleton calls the implementation of the method on
the server.

Failures in communications

 loss of messages

 crash of a process

1. Loss of request message

2. Loss of result message

3. Server breakdown

4. Client breakdown

Failures types (1/2)

1. Loss of request message:
 the client must retransmit the message after a timeout

 problem: the client cannot differentiate between different
types of failures

 E.g. if the result message is the one that is lost, a
retransmission of the request message could result in the
procedure being executed twice

 E.g. long procedures when too short a timeout is selected.

2. Loss of result message:
 the client retransmits the request after a timeout.

 problem: if the server does not recognize what happened, it
executes the procedure again

Failure types (2/2)

3. Server breakdown:

 If the server breaks down due to a failure, it has to be

determined whether a partial execution of the procedure

had already produced side effects in the state.

 E.g. if the content of a database is modified during the

procedure, it is not trivial to allow the execution to recover and

continue in an ordered way after the crash of the server.

4. Client breakdown:

 A client process that breaks down during the execution of

a RPC is referred to as an orphaned invocation

 Problem: what the server does with the results or where it

should send them.

Failure semantics

 Different applications have different requirements for QoS

(Quality of Service) in terms of failure detection and recovery

Failure

semantics

Fault-free

operation

Message

loss

Server

breakdown

Maybe Execution: 1

Result: 1

Execution: 0/1

Result: 0

Execution: 0/1

Result: 0

At-least-once Execution: 1

Result: 1

Execution: >=1

Result: >=1

Execution: >=0

Result: >=0

At-most-once Execution: 1

Result: 1

Execution: 1

Result: 1

Execution: 0/1

Result: 0

Exactly once Execution: 1

Result: 1

Execution: 1

Result: 1

Execution: 1

Result: 1

Maybe semantics

 Referred also as best-effort.

 Provide no mechanism for lost messages or
process break downs

 E.g. RPC can be carried out zero times or
once on the server side

 The client receives at most one result

 Provide no guarantees.

 So long as no failures occur, RPC is properly
carried out

At-least-once semantics

 RPC will be executed on the server side at least once
in the event of message loss

 After a timeout, the client repeats the RPC until it
receives a response from the server.

 A procedure can be carried out several times on the
server

 Possible that a client will receive several responses due
to the repeated executions.

 Do not provide a confirmation if the server breaks
down.

 Appropriate with idempotent procedures that do not
cause state changes on the server and can be
executed more than once without any harm.

At-most-once semantics

 the procedure will be executed at most

once—both in the case of message loss and

server breakdown

 If the server does not break down, exactly

one execution and exactly one result are

even guaranteed.

 Require a complex protocol with message

buffering and numbering

Exactly once semantics

 Ideal case, not easy to achieve

 The invocation by a client will result in exactly one

execution on the part of the server and also only

delivers one result

 Particularly desirable for bank transactions

 The simple case: idempotent operations

 The case of a simple information terminal that only read

data from a remote server without changing the state of the

server

 repeated executions and numerous result messages

would not be a problem

