
Distributed Systems – Theory

3. Communication in DS

DS vs uniprocessor system | State

 Interprocess communication:
 Uniprocessor:

 interprocess communication implicitly assumes the existence of
shared memory

 E.g. synchronization: the semaphare is shared

 DS: no shared memory, instead messages

 Processes: active components with a state and a
behavior
 State: consists of the data that is managed by the process

 Active state or passive state

 Behavior: the implementation of the applications logic

 Message: sequence of bytes that are transported
between 2 processes via a communications medium

Communication between 2 processes

 One is the sender, another the

receiver

 Space time diagram:

 Active state:

 thick black line

 carry out calculations

 Patterns of message flow:

 Message-oriented communication

 Request oriented communication

- No wait for reply

- With reply from the receiver

Synchronicity of communication mechanism

 describes the time separation between sender and

receiver

 synchronous communication:

 the sender is passive during the communications process

until the message has arrived at the receiver

 asynchronous communication:

 the sender remains active after a message has been sent

 more quickly! Better at supporting the parallelism of

processes

 need a DS capable of buffering messages

Classification of communication mechanisms

Communic. pattern Level of synchronization

Asynchronous Synchronous

Message-oriented no-wait-send rendezvous

Request-oriented remote service invocation remote procedure call

Examples:

 RPC: sender sends a request to the receiver and is passive until the
receiver delivers the results of the request

 RSI: the sender remains active while the receiver is processing the
request

 Datagram services: asynchronous message-oriented
communication; the sender transmits a message to the receiver
without waiting for a reply or changing to the passive state

 Rendezvous: establish a common (logical) time between sender and
receiver

Client-server model

 Advantages:

 Simplicity – no connection has to be established before

 One or more clients have access to the service

 Any kind of communication from previous table

 Easiness to migrate existing appls based on procedural
programming

 Potential for concurrency

 Disadvantages:

 restriction to procedural programming paradigms excludes other
approaches such as functional or declarative programming

 transparency can no longer be achieved in the case of radical
system failure

 problems caused by concurrency when processes need to be
synchronized

Library procedures for communication services

 send(dest,&mptr)
 sends the message pointed to by mptr to a process

identified by dest

 causes the caller to be blocked until the message has been
sent.

 receive(addr,&mptr).
 causes the caller to be blocked until a message arrives;

 when one does, the message is copied to the buffer
pointed to by mptr and the caller is unblocked.

 the addr parameter specifies the address to which the
receiver is listening.

 Many variants of these two procedures and their
parameters are possible.

Blocking primitives

 Above message-passing primitives are called blocking primitives

 Sometimes called synchronous primitives

 when a process calls send
 it specifies a destination and a buffer to send to that destination.

 while the message is being sent, the sending process is blocked
suspended.

 the instruction following the call to send is not executed until the
message has been completely sent.

 a call to receive
 does not return control until a message has actually been received

and put in the message buffer pointed to by the parameter.

 the process remains suspended in receive until a message arrives,
even if it takes hours.

 In some systems, the receiver can specify from whom it wishes to
receive, in which case it remains blocked until a message from that
sender arrives.

Non-blocking primitives

 some-times called asynchronous primitives

 If send is nonblocking, it returns control to the caller

immediately, before the message is sent.

 The advantage of this scheme is that the sending

process can continue computing in parallel with the

message transmission, instead of having the CPU

go idle.

 The choice between blocking and nonblocking

primitives is normally made by the system

designers

Problems with non-blocking primitives
 the sender cannot modify the message buffer until the message has

been sent.

 the sending process has no idea of when the transmission is done, so
it never knows when it is safe to reuse the buffer.

 Solutions:
 copy the message to an internal buffer &allow the process to continue.

 Looks like a blocking call: as soon as it gets control back, it is free to reuse
the buffer.

 But the message will not yet have been sent, but the sender is not hindered
by this fact.

 Disadvantage of this method is that every outgoing message has to be
copied from user space to kernel space.

 interrupt the sender when the message has been sent to inform it that
the buffer is once again available.
 user-level interrupts make programming tricky, difficult, and subject to race

conditions, which makes them irreproducible.

 method is highly efficient and allows the most parallelism,

 disadvantage: programs based on interrupts are difficult to write correctly
and nearly impossible to debug when they are wrong.

Views

 OS design view:
 difference between a synch.& asynch. primitive: the sender

can reuse or not the message buffer immediately after
getting control back

 Programming language designer:
 synchr: the sender is blocked until the receiver has

accepted the message and the acknowledgement has
gotten back to the sender

 everything else is asynchronous in this view.

 if the sender gets control back before the message has
been copied or sent, the primitive is asynchronous.

 when the sender is blocked until the receiver has
acknowledged the message, we have a synchronous
primitive.

Nonblocking receive

 returns control almost immediately.

 how does the caller know when the operation

has completed?

 provide an explicit wait primitive that allows the

receiver to block when it wants to

 or provide a test primitive to allow the receiver to

poll the kernel to check on the status

 Example: conditional-receive, which either gets a

message or signals failure, but in any event returns

immediately, or within some interval.

Timeouts

 In a system in which send calls block, if there

is no reply, the sender will block forever.

 To prevent this situation, in some systems

the caller may specify a time interval within

which it expects a reply.

 If none arrives in that interval, the send call

terminates with an error status.

