
Distributed Systems – Theory

2. Design and middleware

Loosely coupled vs. Tightly coupled softw.

Loosely coupled:

 Allows machines & users of

DS to be independent one

another

 Examples:

1. PCs sharing some

resources, s.a. printers or

databases, over a LAN

2. Network operating

systems: shared file

system, each computer its

OS, obey user requests

Tightly coupled:

 Single time-sharing system

 Users are not aware of the

existence of multiple CPUs

in the system

 Examples:

1. Cluster systems

Process management & file system in DS

 Single, global interprocess communication
mechanism so that any process can talk to any
other process

 How processes are created, destroyed, started, and
stopped must not vary from machine to machine.

 File system must look the same everywhere (global
file system)

 Same system call interface everywhere => (?)
identical kernels run on all the CPUs in the system

 When a process has to be started up, all the kernels
have to cooperate in finding the best place to
execute it

Design issues: 1. Transparency

 DS: a set of cooperating processes

 Complexity resulting from the distribution should
de made transparent (i.e., invisible) to the
applications programmer

 A time-sharing system that achieve single-system
image is said to be transparent

 Example:

1. User of make in Unix to compile a large no. of file
does not need to know if all the compilators are
proceeding in parallel on different machines

2. Read remote files in the manner as the local ones

Transparency types

Kind Meaning

Location transparency The users cannot tell where resources are located

Migration transparency Resources can move at will without changing

their names

Replication transparency The user cannot tell how many copies exist

Concurrency transparency Multiple users can share resources automatically

Parallelism transparency Activities can happen in parallel without users

knowing

Access transparency Identical ways in which access takes place to

local/remote components

Failure transparency Users are unaware of a failure of a component.

Technology transparency Different technologies, such as programming

languages and operating

systems, are hidden from the user.

Design issues: 2. Flexibility

 Usage of monolithic or micro-kernels

systems?

 Monolithic usually: a centralized system +

network facilities

 Micro-kernels are more flexible because it

does almost nothing

Design issues: 3. Reliability

 One of the DS goals: make DS more reliable than

single-processor systems

 E.g. : one machine goes down, some other takes

over the job

 Boolean OR of the components reliability: one

machine has probability 95% up, possibility that all

four ones of a DS are down: (5%)^4=0.0006 %

 Counter-say: Lamport “definition” a DS is a system

“on which I cannot get any work done because

some machine I have never heard of has crashed."

Aspects of reliability

 Availability: fraction of time that the system is usable – can be
enhanced by:

 a design that does not require simultaneous functioning of a
substantial no. of critical components

 Redundancy: key pieces of hardware and software should be
replicated, so that if one of them fails the others will be able to take
up

 More copies -> better availability -> greater the chance for the copies
to be inconsistent

 Security – resources protected from unauthorized usage (more
severe in DS than in single proc. sys)

 Fault tolerance

 e.g. effects of server crashing and quick rebooting

 DS must designed to mask failures: hide them from the user

Design issues: 4. Performance

 Running an application on a DS it should not be appreciably worse than
running the same application on a single processor

 Metrics:
 Response time

 Throughput (number of jobs per hour),

 system utilization,

 amount of network capacity consumed.

 Performance problem: communication is typically quite slow -> optimize
performance by minimizing the no. messages.

 ? Best way: gain performance is many activities running in parallel on
different processors, but this requires sending many messages
 Starting up a small computation remotely, such as adding two integers, is

rarely worth it

 Starting up a long compute-bound job remotely may be worth the trouble

See Parallel Computing lecture from second semester!

Design issues: 5. Scalability
 Usual DS: few hundred of CPUs.

 Grids: several thousands

 Electronic reservation soon tens of millions

 The problem: solution that work well for 200 machines will fail
miserably for 200,000,000

 Guiding principle:
 Avoid centralized components

 Counter-example: a single mail server for 50 million users (non-fault
tolerant, network bootleneck etc)

 Avoid centralized tables
 Counter-example: a single data-base keep track of the telephone

numbers and addresses of 50 million people

 Avoid centralized algorithms
 Example: a large distributed system, an enormous no. of messages

have to be routed over many lines.
 Bad way: optimal way to do this is collect complete information (to one

server) about the load on all machines and lines, and then run a graph
theory algorithm (on one server) to compute all the optimal routes; then
spread info around the system to improve the routing.

Decentralized algorithms - characteristics

1. No machine has complete information about the

system state.

2. Machines make decisions based only on local

information.

3. Failure of one machine does not ruin the algorithm.

4. There is no implicit assumption that a global clock

exists
 Counter-example: Any algorithm that starts out with "At

precisely 12:00:00 all machines shall note the size of their

output queue" will fail because it is impossible to get all the

clocks exactly synchronized.

Middleware

 offers general services that support

distributed execution of applications

 it is software positioned between the

operating system and the application

 a “tablecloth” that spreads itself over a

heterogeneous network, concealing the

complexity of the underlying technology from

the application being run on it.

Middleware Tasks in case of a OO appl. (1)

 Object:

 encapsulates state and behavior and can only be

accessed via a well-defined interface.

 interface hides the details that are specific to the

implementation, thereby helping to encapsulate

different technologies.

 a unit of distribution

 communicate with each other by exchanging

messages.

 Object model support:
 Middleware should offer mechanisms to support the concepts

incorporated in the object model.

 Operational interaction:
 Middleware should allow the operational interaction between two

objects. The model used is the method invocation of an object-
oriented programming language.

 Remote interaction:
 Middleware should allow the interaction between two objects

located in different address spaces.

 Distribution transparency:
 From the standpoint of the program, interaction between objects

is identical for both local and remote interactions.

 Technological independence:
 The middleware supports the integration of different technologies.

Middleware Tasks in case of a OO appl. (2)

Structure of a Middleware Platform

 middleware is conceptually located between the
application and OS

 the application is represented as a set of interacting
objects

 each object is explicitly allocated to a hardware
platform

Middleware hides the heterogeneity

Heterogeneity exists at different places:

 Programming languages:
 Different objects can be developed in different

programming languages.

 Operating system:
 Operating systems have different characteristics and

capabilities.

 Computer architectures:
 Computers differ in their technical details (e.g., data

representations).

 Networks:
 Different computers are linked together through different

network technologies.

How middleware deals with heterogeneity

 Offer equal functionality at all access points:

 applications have access to its functionality through an API;

APIs are adapted to the conditions of each programming

language that is supported by the middleware.

 An applications programmer typically sees

middleware as a program library and a set of tools.

 depends on the development environment that the

programmer is using.

 affected also by the actual compiler/interpreter used to

develop a distributed application.

Standardization of a Middleware

 When project a middleware to a global, worldwide network, we
would find special characteristics that differ from those of a
geographically restricted DS.

 middleware spans several technological and political domains,

 it can no longer be assumed that a homogenous technology
exists within a DS

 Cannot assume that one vendor alone is able to supply
middleware in the form of products for all environments

 avoid the monopoly!

 Innovation through competition

 implementation of middleware through several competing
products can result in partial solutions that are not compatible.

 Compatibility is only possible if all vendors of middleware adhere
to a standard

Standard

 Stipulate the specification for a product—

 an abstract description of a desired behavior that allows a degree
of freedom in the execution of an implementation.

 Serves as a blueprint according to which different products (i.e.,
implementations) can be produced.

 A specification identifies the verifiable characteristics of a
system.

 if a system conforms to a standard, it is fulfilling these
characteristics.

 Advantages:

 guarantees vendor independence, thereby enabling a customer
to select from a range of products without having to commit to
one particular vendor.

 protection of the user investment in order to use a product.

Characteristics of open standards

 Nonproprietary:
 The standard itself is not subject to any commercial interests

 Freely available:
 Access to the standard is available to everyone

 Technology independent:
 The standard represents an abstraction of concrete technical

mechanisms and only defines a system to the extent that is
necessary for compatibility between products

 Democratic creation process:
 The creation and subsequent evolution of the standard is not

ruled by the dominance of one company but takes place through
democratic processes

 Product availability:
 A standard is only effective if products exist for it.

Interfaces between DS components

 In the context of middleware, a standard has

to establish the interfaces between different

components to enable their interaction with

one another.

 Two types of interface: horizontal and vertical

Horizontal interface / API / Portability

 exists between an application and the middleware

 defines how an application can access the
functionality of the middleware

 is also referred to as an Application Programming
Interface (API)

 the standardization of the interface between
middleware and application results in the portability
of an application to different middleware:
 the same API exists at each access point.

 applications programmers are typically only
interested in the horizontal interface because it
defines the point of contact to their appls.

Vertical interface / Interoperability

 defines the interface between two instances of a middleware
platform

 is typically defined through a protocol on the basis of messages,
referred to as protocol data units (PDUs).
 A PDU is a message sent over the network.

 Both client and server exchange PDUs to implement the protocol.

 separates technological domains

 ensures that applications can extend beyond the influence area of
the product of middleware

 the standardization of this interface allows interoperability between
applications

 of minor importance for the development of an application.

 implicit dependency exists between vertical and horizontal
interfaces.
 For example, coding rules for the PDUs have to exist in the vertical

interface for all data types available in the horizontal interface of an
application.

Sample application: account example

 customer wishes to do operations on a bank
account.

 we are not concerned with different types of
accounts, or how accounts are created by a bank.

 for simplicity sake, we assume that only one
customer and one account exist, each represented
through an object

 the account maintains a balance,

 the customer can deposit and withdraw money
through appropriate operations

 the customer can furthermore inquire as to the
balance of the account.

Sequence diagram for account use case

& UML class diagram

Distribution of the Sample Application

 Layers:
 The server layer contains the account object.

 The client layer accesses this object through references
(i.e., C++ pointers).

 The separation of client and server into different
address spaces: assumes that:
 the actual parameters are being transmitted between

processes since a common address space no longer exists

 all data belonging to the parameters of an interaction
between a client and a server must therefore be
transmitted explicitly to the address space of the server

 the data must be self-contained; that is, it is not allowed to
contain a pointer that is only valid in the context of the
client.

Proxies

 A proxy of the server exists on the client side to
 offers the same API as the server itself

 transmit all current parameters over a communications
channel to the remote address space

 In the remote address space, a proxy of the client
 accepts the data and

 executes the actual invocation on the server.

 it is not possible to distinguish the proxies from their
“originals,” so the distribution of client and server is
transparent.

 the proxies are used to fill the gaps on either side so
that client and server are unaware of the separation.

