
Resource management in

distributed systems

Resource management

Topic in various fields such as:

–job shop, flow shop or open shop scheduling in
production environment, printed circuit board
assembly scheduling

–scheduling of tasks in distributed computing
systems such as cluster, grid, cloud, edge, fog

Basic taxonomy in this lecture

Example for IaaS (Cloud)

Resources in IaaS (Cloud)

Provisioning

Is responsible

–To understand the user needs

–To prepare VMs with

appropriate resources to match

the workloads and QoS

requirements

–SLA Negotiation

–Etc.

Allocation

Is responsible

–To select an optimal set of

physical machines to host the

received services (VMs),

–To ensure the resource and

QoS constraints are met.

–To manage changes in

resources availability through

VMs restore or migration

Goals in provisioning

 A wide variety of resource provisioning goals exist:
–High resource utilization

–Energy efficiency

–Reliability of services

–Low performance interference

 Optimally achieving the goals in cloud computing
environment has been proved to be an NP-complete
problem due to its combinatorial optimization nature.
 There are no algorithms which may produce optimal solution

within polynomial time for such kind of problems.

Inputs for provisioning algorithms

 Is imperative to consider information such as highly heterogeneous
and time-varying workloads.
–daily demand distribution of a typical Internet application

–request arrivals and departures statistics

 What type of resources the application needs?
–VM that is abundant in a particular type of resource: bandwidth, CPU, or

storage.

 aspects such as
–the multi-tenant,

–resource-abundant,

–elastic resource model and

–quality of service requirements expressed in terms of execution time and cost

Resource provisioning classification

 Static Resource Provisioning
 Given information such as highly heterogeneous and time-

varying workloads , allocation solutions based on static
resource provisioning lead to poor performance and hinder
providers from achieving expected profits.

 Dynamic Resource Provisioning
 With dynamic provisioning, the provider allocates more

resources as they are needed and removes them when
they are not.

 Hybrid Resource Provisioning
 Combines other resource provisioning approaches

Provisioning in IaaS (Cloud)

 The Cloud resource provisioning enables

virtualized resources to be allocated to Cloud

consumers based on three provisioning plans

–On-Demand,

–Reserved, and

–Spot instances (Preemptible VMs in Google)

The three provisioning plans

Under vs over-provisioning

 Planning resources for only usual workloads
request rejection and QoS degradation

Over-provisioning to handle
demand peaks can result in
significant costs and unused
capacities

Under-provisioning or over-provisioning?

 Minimizing both under-provisioning and overprovisioning

problems under the demand and price uncertainty in

cloud computing environments is important.

 The under-provisioning problem can be solved by

provisioning more resources at higher cost with on-

demand plan.

 The only recourse for the overprovisioning problem is to

support it with on-demand instances fee structure

Advanced reservation

 Some applications such as interactive multimedia require end-to-

end reservation for resources.

 Advance reservation techniques are very useful in federated cloud

as well, particularly for the co-allocation of various resources

 Reservation is accepted for a fixed contract duration (e.g. for a 1

year contract or for a 3 year contract) with a one-time upfront

payment for the duration of the contract

 Reservation is significantly cheaper than the on-demand fee

structure.

Single Contract reservation

 The reservation decision is taken for each contract duration (called segment)
separately during the whole duration of the demand vector as shown below

Spot Instances

 Spot instances are Amazon’s third plan specifically tailored for

offering their unused resources at a much lower cost than

both on-demand and advanced reservation

 Major cloud service providers (AWS, Google, and Azure) offer

the option to use Spot Instances.

 Cloud users can bid on unused Amazon EC2 capacity and run

those instances for as long as their bid exceeds the current

spot price.

 A wide variety of auction-based approaches for spot instances

bidding has been proposed in the literature

When to use spot instances?

 Very useful in both batch processing and high-performance clusters, as

well as web server fleets with variable workloads.

 Well-suited for data analysis, batch jobs, background processing, and

optional tasks

 Spot Instances are a cost-effective choice if you can be flexible about

when your applications run and if your applications can be interrupted.

 The appeal for Spot Instance is its cheapness as compared to both

Reserved and on-demand Instances

 It is estimated that

–reserved instances can save up to 70% compared to On-Demand with a

1- or 3-year commitment

–spot instances saving is as high as 80-90% compared to On-Demand

Challenges

 The problem with spot instances is that their price changes
periodically based on supply and demand of spot instances

 Cloud users whose bid exceeds the current spot instances
price gain access to the available spot instances.

 This render the use of spot instances unreliable since the
instances may become unavailable at any time without any
notice to the customer.

 One way to handle the sudden discontinuation of spot
instances is to deploy checkpointing schemes

Spot Instances vs. On-demand instances

–Spot Instances can only be launched

immediately if there is available capacity,

–the hourly price for Spot Instances varies

based on demand, and

–Spot instances can be interrupted

Resource allocation: (1) in Grids

 Resource allocation of requests= „ Matchmaking”

 Globus Architecture for Reservation and Allocation
(GARA)
 Characterized by a Start Time and an End Time

 Guaranteed service – QoS assurances

 Matchmaking “in the dark”
 Advance Reservation (AR) Request:

 Earliest Start Time

 Execution Time

 Deadline

 Focus: Matchmaking without knowing the resource
scheduling policy

Grid: resource allocation policy

 Fixed

 Application oriented policy: GRACE, Ninf, G-

QoSM, Javelin, 2K, AppLeS, Cactus, PUNCH,

Nimrod/G, NetSolve

 System oriented: Darwin

 Extensible

 ad-hoc: MOL, Globus

 structured: Legion

Resource allocation: (2) in Clusters

 Centralized: LoadLeveler, LSF, PBS, SLURM,

Condor, PVM, Libra, OpenSSI, Faucets,

GNQS

 Decentralized: Cluster-on-demand,

Kerrighed, Gluster, DQS, Tycoon, Enhanced

MOSIX, REXEC

Resource allocation: (3) in Clouds

 Resource discovery identifies the physical hosts that
are available that best suites the user requirements

 Resource scheduling aims to identify the best
resource from a set of available matched resources.
 Resource allocation is performed that aims to allocate the

selected resource to the job.

 The process in its broader terms is carried out by a broker who
selects the best VM instance against set of available VM instances
for the purpose of meeting QoS requirements of each product
operation.

 Resource allocation is followed by resource
monitoring

Resource scheduling: the problem

The scheduling problem definition

Even simple scheduling problem is complex!

Scheduling can be more complex

Static features related to a scheduling

problem

Scheduling solution

Case study:

Cloud

Why energy is an issue?

 Traditionally performance have been the main
interest in system design and development

 With energy price souring and environmental
concerns, energy consumption management has
become an important issue in various domains.

– Exascale systems (HPC)

– Cloud data center

– IoT devices (e.g., portable medical devices)

– Embedded systems - Mobile and portable devices
(e.g., digital camcorders, mobile phones), laptops

– Sensor network applications

How is the energy typically used in a data center

Energy consumption at different levels

Power vs. energy

 Power is the rate at which the system

performs the work,

 Energy is the total amount of work performed

over a period of time.

If P is power, T is a period of time, W is the total

work performed in that period of time:

P=W/T, E=PT

 A reduction of the power consumption does

not always reduce the consumed energy

Lowering power

Dynamic power management

 Dynamic Power Management (DPM) is a

design methodology for energy and power

management of dynamically reconfiguring

systems.

 The goal for a DPM system is to provide the

requested services and performance with a

minimum power consumption.

 An example of DPM is the ‘Dynamic Voltage

and Frequency Scaling (DVFS).’

Cost of Cloud resources

Quality of service (QoS)

 Cloud users expect Quality-of-service
guarantees from the cloud service providers.

 QoS parameters indicate the ability of a service
to meet certain requirements for different
aspects of the service

 For example
– Deadline constraint: This represents the time till which
the task or the batch of tasks should be finished.

– Budget constraint: This represents the restriction on
the total cost of executing all tasks.

– Cost: resources are provisioned in a cost-efficient way

User objectives

Cloud service provider objectives

 Cloud providers need to efficiently manage
resources to achieve the performance of their
applications and improve the utilization of
reserved resources, thereby minimizing the
usage cost.

 Some objectives

– Revenue maximization

– Resource utilization maximization

These must be done in measured manner is it can
lead to system overload.

How to achieve both side objectives?

 Cloud providers must achieve certain level of
QoS

 For instance
– For budget constraint jobs the cost of performing these
jobs cannot exceed a certain budget constraint

 Therefore, one of the challenges facing service
provider is how to complete jobs with
unpredictable submission time under budget and
deadline constrains
- Most of existing work do not consider unpredictable
submission time of jobs, as well as budget and deadline
constrains simultaneously

Service Level Agreements (SLA)

 Service Level Agreements (SLAs) form an important
component of the contractual relationship between a
cloud customer and a cloud service provider

 Different cloud services and deployment models will
require different approaches to SLAs

 The global nature of Cloud computing renders SLAs
to cross several jurisdictions

 Frameworks for handling data privacy is an
important addition to cloud computing

 Total economical penalties for SLA violations the
sum of the total proportional penalties costs for
unsatisfied demand of resources

SLA-aware scheduling

 The objective is to satisfy the SLA requirements of the

user while minimizing the total cost

 If SLA requirements consist of Budget and Deadline, the

algorithm objective

Optimization algorithms

 Optimization algorithms can be roughly divided into two categories:
exact algorithms and heuristics.

 Exact algorithms are designed in such a way that it is guaranteed
that they will find the optimal solution in a finite amount of time.
–For scheduling optimization problems (e.g. NP-hard or global optimization) this
"finite amount of time" may increase exponentially in respect to the dimensions
of the problem.

 Heuristics do not have this guarantee, and therefore generally return
solutions that are worse than optimal.
–Heuristic algorithms usually find "good" solutions in a "reasonable" amount of
time

 adapted to the problem at hand and they try to take full advantage of the
particularities of this problem

 because they are often too greedy, they usually get trapped in a local
optimum and thus fail, in general, to obtain the global optimum solution.

Heuristic algorithms are generally make simplifying assumptions to relax
constrains.

A general view of the solutions

Examples of Rule-based Heuristics

for Clouds
 Min-Min

 Sufferage

 Max-Min

 Minimum Completion Time (MCT),

 Minimum Execution Time (MET)

 First Come First Serve (FCFS)

 Ant Colony Optimization (ACO)

 Particle Swarm Optimization (PSO)

 Bin Packing

 Genetic Algorithm

Min-Min Heuristic

 Min-Min heuristic initiates with the set MT [Meta-Task]
comprising of all unassigned tasks and executes in two
phases.

 1st phase establishes minimum expected completion time
(for each task in MT) on each machine.

 2nd phase chooses the task boasting minimum expected
completion time among the set of tasks in MT.

 Further, the chosen task is assigned to the matching
resource (having minimum expected completion time).

 Finally, the assigned task is removed from MT and the
process is replicated multiple times until each task in the
MT is mapped

Key Notations

Symbol Definition

MT Meta-Task comprising of submitted tasks

VMT Set of virtual machines in data center

Ti Current task in Meta-Task

VMj Current vm instance in VMT

CTi,j Completion Time Matrix of Task Ti on VMj

ETi,j Execution Time of Task Ti on VMj

Rj Ready Time of VMj

MCTi Minimum Completion Time of Task Ti

Sec_MCTi Second Minimum Completion Time of Task Ti

Tu Task with Minimum Completion Time

VMv Virtual Machine that takes minimum completion time

Tv Task with Maximum Completion Time

SVi Sufferage value for task Ti

Ts Task with maximum sufferage value

Min-Min Heuristic

Input: Meta-Task MT, Task Length Mi, Resource Speed MIPSj, Resources VMT, Execution Time Matrix ETi,j

Output: Mapped Schedule S:S(T1), S(T2),…..S(Tn)

Begin:

MT←{T1,T2,….Tn), VMT←{VM1,VM2,….VMm)

While MT ≠ 𝜙 Do

For Ti ∈ MT Do

For VMj ∈ VMT Do

Compute ETi,j = Mi / MIPSj

For Ti ∈ MT Do

For VMj ∈ VMT Do

Compute CTi,j= ETi,j + Rj

Find MCTi // Tu on VMv,

Sort(CTi,1,CTi,2,…..CTi,n)

Find S(Tu) for (Tu, VMv)

Compute MT=MT- Tu //Delete task Tu from Meta-Task

Ru=CTu,v // Update ready time of machine v

For Ti ∈ MT Do CTi,v=Ei,v + Rv

End

Resource Monitoring

 Is a key tool that provision controlling and managing

software and hardware infrastructures

 It bestows and maintains key performance indicators that

facilitate data collection to aid in decisions associated with

resource allocation process.

 It monitors state of resources at the time of failure at

physical or service layers.

Monitoring reports

Are used by human or automated managers to make

management decisions, resulting in control actions that

may modify the behaviour of the managed systems

Elements of a monitoring reference

model (1/2)
1. Generation of monitoring information

 Status reporting

 Event detection and reporting

 Trace generation

2. Processing of monitoring information
 Merging and multiple trace generation

 Validation

 Model updating

 Combination

 Filtering

 Analysis

3. Dissemination of Monitoring Information
 Registration of subscribers to dissemination service

 Specification of information selection criteria

Elements of a monitoring reference

model (2/2)

4. Presentation of Monitoring Information
 Textual displays

 Time process diagrams

 Animation of events and status

 User control of levels of abstraction

 User control of information placement and
time frame for updates

 Multiple simultaneous views

 Visibility of interaction message contents

5. Implementation Issues
 Special purpose hardware

 Software probes

 Time synchronisation for event ordering

Time-driven monitoring vs. Event-driven monitoring

 Time-driven monitoring is based on acquiring periodic
status information to provide an instantaneous view of the
behaviour of an object or a group of objects.
 There is a direct relationship between the sampling rate and the

amount of information generated.

 Event-driven monitoring is based on obtaining information
about occurrence of events of interest, which provide a
dynamic view of system activity.
 The amount of generated and communicated monitoring data is

reduced as only the information pertaining to activity of interest is
collected and transmitted.

 Most common approach adopted in monitoring systems.
 These systems provide automatic recognition of events which means

that the user need not explicitly collect and analyse the lower level details
of system behaviour

Cluster vs. Grid vs. Cloud Monitoring

 Monitoring of Cloud is more complex due to the trust model and the
view on resources/services presented to the user
 Grid: simple accounting criteria and limited respurce abstraction leading to

simple relation between monitoring parameters and physical resource status

 Cloud: high abstraction of resources leading to opaque relationship between
the layer- or service- specific observables and underlying resources

 Most of the monitoring approaches/platforms proposed for the Grid
case have been customized for Cloud sustems
 Grid: Ganglia, Nagios, MonaLisa, R-GMA, GridICE

 Clusters comparable to a base technology for Cloud IaaS Providers

 Most properties of Cloud monitoring systems do not apply to
Cluster/Grids (e.g. elasticity, adaptability, autonomicity) or are not vital
(e.g. extensibility, intrusiveness)

Metrics in computation-based tests
 server throughput (no. requests/second),

 CPU speed,

 CPU time per execution (CPU time of a single execution),

 CPU utilization (CPU occupation of each virtual machine),

 memory page exchanges per second (no. memory
pages/second exchanged through the I/O);

 memory page exchanges per execution (no. memory pages
used during an execution);

 disk/memory throughput;

 throughput/delay of message passing between processes;

 duration of specific predefined tasks;

 response time;

 VM startup time;

 VM acquisition/release time;

 execution/access time,

 up-time

Metrics in network-based tests

 round-‐trip time (RTT),

 jitter,

 throughput,

 packet/data loss,

 available bandwidth,

 capacity,

 traffic volume

Cloud monitoring platforms and

services

